• <u>SMOOTH SURFACE:</u>

A surface S is **smooth** if the normal vector at each point in S exists & is nonzero.

• **<u>PIECEWISE SMOOTH SURFACE:</u>**

A surface S is **piecewise smooth** if it is the union of a finite # of smooth subsurfaces.

• **SURFACE INTEGRAL:**

Let surface $S \subset \mathbb{R}^3$ be defined by z = f(x, y).

Let region $D \subset \mathbb{R}^2$ be the projection of surface S onto the xy-plane. Let $f \in C^{(1,1)}(D)$ and $g \in C(S)$.

Then the **surface integral** of g **across** S is defined to be:

$$\underbrace{\iint_{S} g(x, y, z) \ dS}_{surface \ integral} := \underbrace{\iint_{D} g(x, y, f(x, y)) \sqrt{1 + (f_x)^2 + (f_y)^2} \ dA}_{double \ integral}$$

<u>REMARK:</u> $\iint_S dS$ gives the surface area of the portion of S over region D in xy-plane.

• ORIENTABLE SURFACE:

A surface S is **orientable** if S has a unit normal vector field $\widehat{\mathbf{N}}(x, y, z) \in C(S)$.

Geometrically, an orientable surface is "2-sided."

<u>REMARK:</u> Most typical surfaces are orientable.

<u>REMARK</u>: Examples of non-orientable surfaces are: Möbius Strip, Klein Bottle

• FLUX INTEGRAL:

Let orientable surface $S \subset \mathbb{R}^3$ be described by z = f(x, y) w/ unit normal field $\widehat{\mathbf{N}}$. Let region $D \subset \mathbb{R}^2$ be the projection of surface S onto the xy-plane. Let vector field $\vec{\mathbf{F}}(x, y, z) \in C^{(1,1,1)}(S)$ and scalar field $f \in C^{(1,1)}(D)$.

Then the flux (integral) of $\vec{\mathbf{F}}$ across S is:

$$\iint_{S} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS = \iint_{D} \vec{\mathbf{F}} \, (x, y, f(x, y)) \cdot \langle -f_x, -f_y, 1 \rangle \, dA \qquad \text{(if } \widehat{\mathbf{N}} \text{ is upward)}$$
$$\iint_{S} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS = \iint_{D} \vec{\mathbf{F}} \, (x, y, f(x, y)) \cdot \langle f_x, f_y, -1 \rangle \, dA \qquad \text{(if } \widehat{\mathbf{N}} \text{ is downward)}$$

EX 13.5.1: Let surface S be the portion of the plane z = 4 - x - y above the xy-plane for which $x \ge 0$ and $y \ge 0$. Compute the surface integral $I = \iint_S xy \ dS$. **<u>EX 13.5.2</u>**: Let surface S be the portion of the plane z = 4 for which $x^2 + y^2 \le 1$.

Compute the surface integral $I = \iint_{S} (x^2 + y^2) dS.$

<u>EX 13.5.3</u>: Let surface S be the portion of the paraboloid $z = x^2 + y^2$ for which $z \le 4$.

Compute the surface integral $I = \iint_S \frac{1}{\sqrt{1+4z}} \, dS.$

EX 13.5.4: Let surface S be the portion of the hemisphere $x^2 + y^2 + z^2 = 5$ for which $z \ge 1$, oriented upward. Let vector field $\vec{\mathbf{F}}(x, y, z) = \langle 2x, 2y, 0 \rangle$. Compute the flux integral $I = \iint_S \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} \, dS$.