- SMOOTH SURFACE:

A surface S is smooth if the normal vector at each point in S exists \& is nonzero.

- PIECEWISE SMOOTH SURFACE:

A surface S is piecewise smooth if it is the union of a finite $\#$ of smooth subsurfaces.

- SURFACE INTEGRAL:

Let surface $S \subset \mathbb{R}^{3}$ be defined by $z=f(x, y)$.
Let region $D \subset \mathbb{R}^{2}$ be the projection of surface S onto the $x y$-plane.
Let $f \in C^{(1,1)}(D)$ and $g \in C(S)$.
Then the surface integral of g across S is defined to be:

$$
\underbrace{\iint_{S} g(x, y, z) d S}_{\text {surface integral }}:=\underbrace{\iint_{D} g(x, y, f(x, y)) \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A}_{\text {double integral }}
$$

REMARK: $\iint_{S} d S$ gives the surface area of the portion of S over region D in $x y$-plane.

- ORIENTABLE SURFACE:

A surface S is orientable if S has a unit normal vector field $\widehat{\mathbf{N}}(x, y, z) \in C(S)$.
Geometrically, an orientable surface is "2-sided."
REMARK: Most typical surfaces are orientable.
REMARK: Examples of non-orientable surfaces are: Möbius Strip, Klein Bottle

- FLUX INTEGRAL:

Let orientable surface $S \subset \mathbb{R}^{3}$ be described by $z=f(x, y)$ w/ unit normal field $\widehat{\mathbf{N}}$.
Let region $D \subset \mathbb{R}^{2}$ be the projection of surface S onto the $x y$-plane.
Let vector field $\overrightarrow{\mathbf{F}}(x, y, z) \in C^{(1,1,1)}(S)$ and scalar field $f \in C^{(1,1)}(D)$.
Then the flux (integral) of $\overrightarrow{\mathbf{F}}$ across S is:

$$
\begin{aligned}
& \iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iint_{D} \overrightarrow{\mathbf{F}}(x, y, f(x, y)) \cdot\left\langle-f_{x},-f_{y}, 1\right\rangle d A \\
& \iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iint_{D} \overrightarrow{\mathbf{F}}(x, y, f(x, y)) \cdot\left\langle f_{x}, f_{y},-1\right\rangle d A \quad \text { (if } \widehat{\mathbf{N}} \text { is upward) }
\end{aligned}
$$

EX 13.5.1: Let surface S be the portion of the plane $z=4-x-y$ above the $x y$-plane for which $x \geq 0$ and $y \geq 0$.
Compute the surface integral $I=\iint_{S} x y d S$.

EX 13.5.2: Let surface S be the portion of the plane $z=4$ for which $x^{2}+y^{2} \leq 1$.
Compute the surface integral $I=\iint_{S}\left(x^{2}+y^{2}\right) d S$.

EX 13.5.3: Let surface S be the portion of the paraboloid $z=x^{2}+y^{2}$ for which $z \leq 4$.
Compute the surface integral $I=\iint_{S} \frac{1}{\sqrt{1+4 z}} d S$.

EX 13.5.4: Let surface S be the portion of the hemisphere $x^{2}+y^{2}+z^{2}=5$ for which $z \geq 1$, oriented upward.
Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\langle 2 x, 2 y, 0\rangle$.
Compute the flux integral $I=\iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$.

