- COMPATIBLE ORIENTATIONS:

The orientations of a surface $S \&$ its bounding Jordan curve C are said to be compatible if the positive direction on C is counterclockwise in relation to the outward normal vector $\widehat{\mathbf{N}}$ of the surface (see below figure).

- STOKES' THEOREM:

Let orientable surface $S \subset \mathbb{R}^{3}$ have the unit normal vector field $\widehat{\mathbf{N}}$.
Moreover, let S be bounded by a Jordan curve C whose orientation is compatible with the orientation on S.
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(S)$.
Then:

$$
\oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}=\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S
$$

- STOKES' THEOREM (FTC FORM):

Let orientable surface $S \subset \mathbb{R}^{3}$ have the unit normal vector field $\widehat{\mathbf{N}}$.
Moreover, let the boundary of S, denoted by ∂S, be a Jordan curve C whose orientation is compatible with that of S. Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(S)$.

Then:

$$
\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S=\oint_{\partial S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}
$$

- CHOOSING A SURFACE FOR A BOUNDARY JORDAN CURVE:

JORDAN BOUNDARY CURVE	CANDIDATE SURFACE(S)
Circle	Paraboloid, Half-Sphere, Circular Cone, or Plane
Ellipse	Paraboloid, Half-Ellipsoid, Elliptic Cone, or Plane
Polygon	Plane
Intersection of Surfaces S_{1} and S_{2}	S_{1} or S_{2}

EX 13.6.1: Let curve C be the circle $x^{2}+y^{2}=1$ in the plane $z=1$ oriented CCW as viewed from above.
Use Stokes' Theorem to compute the line integral $I=\oint_{C}(y d x+x d y+z d z)$.

EX 13.6.2: Let curve C be the intersection of plane $y+z=2 \&$ cylinder $x^{2}+y^{2}=1$ oriented CCW as viewed from above.
Use Stokes' Theorem to compute the line integral $I=\oint_{C}\left(-y^{2} d x+x d y+z^{2} d z\right)$.

EX 13.6.3: Let surface S be the portion of the cone $z=-\sqrt{x^{2}+y^{2}}$ with $z \geq-2$ with upward unit normal $\widehat{\mathbf{N}}$.
Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle y z,-x z, z^{3}\right\rangle$.
Use Stokes' Theorem to compute the surface integral $I=\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S$.

