STOKES' THEOREM [SST 13.6]

• <u>COMPATIBLE ORIENTATIONS:</u>

The orientations of a surface S & its bounding Jordan curve C are said to be **compatible** if the positive direction on C is counterclockwise in relation to the outward normal vector $\hat{\mathbf{N}}$ of the surface (see below figure).

• **<u>STOKES' THEOREM:</u>**

Let orientable surface $S \subset \mathbb{R}^3$ have the unit normal vector field $\widehat{\mathbf{N}}$.

Moreover, let S be bounded by a Jordan curve C whose orientation is compatible with the orientation on S. Let vector field $\vec{\mathbf{F}} \in C^{(1,1,1)}(S)$.

Then:

$$\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}} = \iint_S \left(\nabla \times \vec{\mathbf{F}} \right) \cdot \widehat{\mathbf{N}} \ dS$$

• STOKES' THEOREM (FTC FORM):

Let orientable surface $S \subset \mathbb{R}^3$ have the unit normal vector field $\widehat{\mathbf{N}}$.

Moreover, let the boundary of S, denoted by ∂S , be a Jordan curve C whose orientation is compatible with that of S. Let vector field $\vec{\mathbf{F}} \in C^{(1,1,1)}(S)$.

Then:

$$\iint_{S} \left(\nabla \times \vec{\mathbf{F}} \right) \cdot \widehat{\mathbf{N}} \ dS = \oint_{\partial S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$$

• CHOOSING A SURFACE FOR A BOUNDARY JORDAN CURVE:

JORDAN BOUNDARY CURVE	CANDIDATE SURFACE(S)
Circle	Paraboloid, Half-Sphere, Circular Cone, or Plane
Ellipse	Paraboloid, Half-Ellipsoid, Elliptic Cone, or Plane
Polygon	Plane
Intersection of Surfaces S_1 and S_2	S_1 or S_2

EX 13.6.1: Let curve C be the circle $x^2 + y^2 = 1$ in the plane z = 1 oriented CCW as viewed from above.

Use Stokes' Theorem to compute the line integral $I = \oint_C (y \ dx + x \ dy + z \ dz).$

EX 13.6.2: Let curve *C* be the intersection of plane y + z = 2 & cylinder $x^2 + y^2 = 1$ oriented CCW as viewed from above. Use Stokes' Theorem to compute the line integral $I = \oint_C (-y^2 dx + x dy + z^2 dz)$.

<u>EX 13.6.3</u>: Let surface S be the portion of the cone $z = -\sqrt{x^2 + y^2}$ with $z \ge -2$ with upward unit normal $\widehat{\mathbf{N}}$. Let vector field $\vec{\mathbf{F}}(x, y, z) = \langle yz, -xz, z^3 \rangle$.

Use Stokes' Theorem to compute the surface integral $I = \iint_{S} \left(\nabla \times \vec{\mathbf{F}} \right) \cdot \hat{\mathbf{N}} \, dS.$