DIVERGENCE THEOREM (AKA GAUSS' THEOREM) [SST 13.7]

• GAUSS' THEOREM:

Let closed piecewise smooth surface $S \subset \mathbb{R}^3$ be oriented <u>outward</u> with the unit normal field $\widehat{\mathbf{N}}$.

Let simply-connected solid $E \subset \mathbb{R}^3$ be the interior of surface S, i.e. S is the outer boundary surface of solid E. Let vector field $\vec{\mathbf{F}} \in C^{(1,1,1)}(E)$.

Then:

• GAUSS' THEOREM (FTC FORM):

Let solid $E \subset \mathbb{R}^3$ be simply-connected.

Let the boundary of E, denoted by ∂E , be a closed piecewise smooth surface oriented <u>outward</u> with unit normal $\widehat{\mathbf{N}}$. Let vector field $\vec{\mathbf{F}} \in C^{(1,1,1)}(E)$.

Then:

$$\iiint_E \nabla \cdot \vec{\mathbf{F}} \ dV = \oiint_{\partial E} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \ dS$$

EX 13.7.1: Let surface S be the sphere $x^2 + y^2 + z^2 = 4$ oriented outward with unit normal field $\widehat{\mathbf{N}}$.

Let vector field $\vec{\mathbf{F}}(x, y, z) = \langle x + 1, 2y + z^4, 3z - \cos(xy) \rangle$.

Use the Divergence Theorem (AKA Gauss' Theorem) to compute the surface integral $I = \oint _{S} \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} \, dS$.

<u>EX 13.7.2</u> Let solid *E* be bounded by the planes z = 0, y = 0, y = 2, and the parabolic cylinder $z = 1 - x^2$.

Let surface S be the boundary of solid E with outward unit normal $\widehat{\mathbf{N}}$.

Let vector field $\vec{\mathbf{F}}(x, y, z) = \langle x + \arctan y, 2y + e^z, z^2 - \sin x \rangle$.

Use the Divergence Theorem (AKA Gauss' Theorem) to compute the surface integral $I = \oint_S \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} \, dS$.

EX 13.7.3: Let surface S_1 be the hemisphere $y = -\sqrt{2 - x^2 - z^2}$ and surface S_2 be the disk $\begin{cases} x^2 + z^2 = 2 \\ y = 0 \end{cases}$ on *xz*-plane. Let surface $S = S_1 \cup S_2$ with outward unit normal $\widehat{\mathbf{N}}$ and let vector field $\vec{\mathbf{F}}(x, y, z) = \langle x^3, y, 3 \rangle$. Use the Divergence Theorem (AKA Gauss' Theorem) to compute the surface integral $I = \oiint_S \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS$.