- GAUSS' THEOREM:

Let closed piecewise smooth surface $S \subset \mathbb{R}^{3}$ be oriented outward with the unit normal field $\widehat{\mathbf{N}}$.
Let simply-connected solid $E \subset \mathbb{R}^{3}$ be the interior of surface S, i.e. S is the outer boundary surface of solid E.
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(E)$.
Then:

$$
\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iiint_{E} \nabla \cdot \overrightarrow{\mathbf{F}} d V
$$

- GAUSS' THEOREM (FTC FORM):

Let solid $E \subset \mathbb{R}^{3}$ be simply-connected.
Let the boundary of E, denoted by ∂E, be a closed piecewise smooth surface oriented outward with unit normal $\widehat{\mathbf{N}}$. Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(E)$.

Then:

$$
\iiint_{E} \nabla \cdot \overrightarrow{\mathbf{F}} d V=\oiint_{\partial E} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d S
$$

EX 13.7.1: Let surface S be the sphere $x^{2}+y^{2}+z^{2}=4$ oriented outward with unit normal field $\widehat{\mathbf{N}}$.
Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x+1,2 y+z^{4}, 3 z-\cos (x y)\right\rangle$.
Use the Divergence Theorem (AKA Gauss' Theorem) to compute the surface integral $I=\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$.

EX 13.7.2: Let solid E be bounded by the planes $z=0, y=0, y=2$, and the parabolic cylinder $z=1-x^{2}$.
Let surface S be the boundary of solid E with outward unit normal $\widehat{\mathbf{N}}$.
Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x+\arctan y, 2 y+e^{z}, z^{2}-\sin x\right\rangle$.
Use the Divergence Theorem (AKA Gauss' Theorem) to compute the surface integral $I=\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$.

EX 13.7.3: Let surface S_{1} be the hemisphere $y=-\sqrt{2-x^{2}-z^{2}}$ and surface S_{2} be the disk $\left\{\begin{array}{c}x^{2}+z^{2}=2 \\ y=0\end{array}\right\}$ on $x z$-plane.
Let surface $S=S_{1} \cup S_{2}$ with outward unit normal $\widehat{\mathbf{N}}$ and let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x^{3}, y, 3\right\rangle$.
Use the Divergence Theorem (AKA Gauss' Theorem) to compute the surface integral $I=\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$.

