## VECTORS \& SCALARS:

- A 3-D vector $\mathbf{v} \in \mathbb{R}^{3}$ is a quantity that has both magnitude and direction. (Hand-write vector $\mathbf{v}$ as $\vec{v}$ )
- e.g. displacement, velocity, force, angular momentum, ...
- A scalar $s \in \mathbb{R}$ is a quantity that only has magnitude.
- e.g. time, temperature, distance, speed, volume, electric charge, ...


## VECTOR NOTATION:

- Component form of a vector: $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$
- Standard basis form of a vector: $\mathbf{v}=v_{1} \widehat{\mathbf{i}}+v_{2} \widehat{\mathbf{j}}+v_{3} \widehat{\mathbf{k}}$ or $\mathbf{v}=v_{1} \widehat{\mathbf{e}}_{1}+v_{2} \widehat{\mathbf{e}}_{2}+v_{3} \widehat{\mathbf{e}}_{3}$
$\star \widehat{\mathbf{i}}=\widehat{\mathbf{e}}_{1}=\langle 1,0,0\rangle$
$\star \widehat{\mathbf{j}}=\widehat{\mathbf{e}}_{2}=\langle 0,1,0\rangle$
$\star \widehat{\mathbf{k}}=\widehat{\mathbf{e}}_{3}=\langle 0,0,1\rangle$
- The vector starting at point $P\left(x_{1}, y_{1}, z_{1}\right)$ and ending at point $Q\left(x_{2}, y_{2}, z_{2}\right)$ is $\mathbf{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$
- Point $P\left(x_{1}, y_{1}, z_{1}\right)$ is called the initial point of vector PQ
- Point $Q\left(x_{2}, y_{2}, z_{2}\right)$ is called the terminal point of vector $\mathbf{P Q}$
- Vectors $\mathbf{u}, \mathbf{v}$ are equal if and only if their components are equal: $u_{1}=v_{1}$ and $u_{2}=v_{2}$ and $u_{3}=v_{3}$.
- Zero vector: $0:=\langle 0,0,0\rangle$
- The vector opposite of vector $\mathbf{v}$ is $-\mathbf{v}$.
- The norm of a vector $\mathbf{v}$, denoted $\|\mathbf{v}\|$, is the length of the vector.
- A unit vector, denoted $\widehat{\mathbf{v}}$, is a vector with norm one.
- A direction vector for a nonzero vector $\mathbf{v}$ is a unit vector with the same direction as $\mathbf{v}$.


## BASIC OPERATIONS WITH VECTORS:

- Vector Addition: $\mathbf{u}+\mathbf{v}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle+\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle$
- Vector Subtraction: $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})=\left\langle u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right\rangle$
- Scalar Multiplication: $t \mathbf{v}=t\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle t v_{1}, t v_{2}, t v_{3}\right\rangle$
- Norm of a Vector: $\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$
- Direction Vector: $\widehat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$
- Linear Combination of Two Vectors: $s \mathbf{u}+t \mathbf{v}=\left\langle s u_{1}+t v_{1}, s u_{2}+t v_{2}, s u_{3}+t v_{3}\right\rangle$
- BEWARE: The notion of "multiplying or dividing two vectors" is NOT DEFINED!!

PROPERTIES OF VECTORS: (Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ and scalars $s, t \in \mathbb{R}$ )

| Vector Commutativity: | $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ | Vector Associativity: $\quad(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ |  |
| :--- | :--- | :--- | :--- |
| Additive Identity: | $\mathbf{u}+\mathbf{0}=\mathbf{u}$ | Additive Inverse: | $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ |
| Vector Distribution: | $(s+t) \mathbf{u}=s \mathbf{u}+t \mathbf{u}$ | Scalar Distribution: | $s(\mathbf{u}+\mathbf{v})=s \mathbf{u}+s \mathbf{v}$ |
| Scalar Multiplication Associativity: | $(s t) \mathbf{u}=s(t \mathbf{u})$ |  |  |

EX 9.2.1: Let $\mathbf{u}=\langle 1,2,3\rangle, \mathbf{v}=\langle 2,-1,-1\rangle$, and $\mathbf{w}=-3 \widehat{\mathbf{i}}-3 \widehat{\mathbf{j}}-\widehat{\mathbf{k}}$.
(a) Compute $3(\mathbf{u}-\mathbf{w})+\frac{1}{2} \mathbf{v}$.
(b) Compute $\|\mathbf{u}\|+\|\mathbf{v}\|^{2}-3\|\mathbf{w}\|^{2}$.
(c) Find the terminal point of vector $\mathbf{u}$ if the initial point is $(-2,3,-4)$.
(d) Find the unit vector $\widehat{\mathbf{u}}$.
(e) Find the unit vector that is in the same direction as $\langle 10,5,-2\rangle$.
(f) Find the unit vector that is in the opposite direction as $3 \widehat{\mathbf{i}}-5 \widehat{\mathbf{j}}-\widehat{\mathbf{k}}$.

