VECTORS: DOT PRODUCT [SST 9.3]

DOT PRODUCT OF TWO VECTORS:

- In \mathbb{R}^2 , $\mathbf{v} = \langle v_1, v_2 \rangle$ and $\mathbf{w} = \langle w_1, w_2 \rangle \implies$ Dot product $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2$
- In \mathbb{R}^3 , $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle \implies$ Dot product $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$
- Notice that the dot product of two vectors is a scalar!

PROPERTIES OF DOT PRODUCTS: (Let vectors
$$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \{\mathbb{R}^2, \mathbb{R}^3\}$$
 and scalar $c \in \mathbb{R}$)

- $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$
- $\vec{\mathbf{0}} \cdot \mathbf{v} = \mathbf{v} \cdot \vec{\mathbf{0}} = 0$
- $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- $c(\mathbf{v} \cdot \mathbf{w}) = (c\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (c\mathbf{w})$
- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

ANGLE BETWEEN VECTORS:

- $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos(\theta_{vw})$, where the angle between the two vectors $\theta_{vw} \in [0, \pi]$ and $\mathbf{v}, \mathbf{w} \in \{\mathbb{R}^2, \mathbb{R}^3\}$
- Nonzero vectors \mathbf{v}, \mathbf{w} are **orthogonal** $\iff \mathbf{v} \cdot \mathbf{w} = 0$
- Nonzero vectors \mathbf{v}, \mathbf{w} are **parallel** \iff $\mathbf{v} = t\mathbf{w}$ for some scalar $t \in \mathbb{R}$.

PROJECTIONS:

- Vector projection of v onto w: $\operatorname{proj}_{w} v = \left(\frac{v \cdot w}{w \cdot w}\right) w$
- Scalar projection of v onto w: $\operatorname{comp}_w v = \pm ||\operatorname{proj}_w v|| = \frac{v \cdot w}{||w||}$

WORK AS A DOT PRODUCT:

• The work W done by a constant force F on an object moving along the line from point P to point Q is: $W = \mathbf{F} \cdot \mathbf{PQ}$

EX 9.3.1:	(a) Find the dot product $\mathbf{v} \cdot \mathbf{w}$ if $\mathbf{v} = \langle 1, 2 \rangle$ and $\mathbf{w} = 4\hat{\mathbf{i}} - 2\hat{\mathbf{j}}$. (c) Find the angle θ_{vw} between $\mathbf{v} \& \mathbf{w}$.	(b) Are \mathbf{v}, \mathbf{w} orthogonal?
EX 9.3.2:	(a) Find the dot product $\mathbf{v} \cdot \mathbf{w}$ if $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = 4\hat{\mathbf{i}} - 5\hat{\mathbf{j}} - 6\hat{\mathbf{k}}$. (c) Find the angle θ between $\mathbf{v} \& \mathbf{w}$.	 (b) Are v, w orthogonal? (d) Are v, w parallel?

<u>EX 9.3.3</u> Find scalar t such that vectors $\mathbf{v} = \langle 1, 3, t \rangle$ and $\mathbf{w} = 2t\hat{\mathbf{i}} + \hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ are orthogonal.

©2013 Josh Engwer – Revised August 15, 2014

<u>EX 9.3.5</u>: Find the (vector) projection of $\mathbf{v} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ onto $\mathbf{w} = \langle 3, -1, -1 \rangle$.

<u>EX 9.3.6</u>: Find the work performed when the force $\mathbf{F} = \langle 1, 2, 3 \rangle$ moves an object along a straight line from point P(-2, 3, 4) to point Q(8, -7, -6).

C2013 Josh Engwer – Revised August 15, 2014