DETERMINANT OF A 2×2 MATRIX:

- Matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \Longrightarrow \operatorname{det}(A)=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$

CROSS PRODUCT OF TWO VECTORS:

- $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3} \Longrightarrow$ Cross product $\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\widehat{\mathbf{i}} & \widehat{\mathbf{j}} & \widehat{\mathbf{k}} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|=\left|\begin{array}{cc}v_{2} & v_{3} \\ w_{2} & w_{3}\end{array}\right| \widehat{\mathbf{i}}-\left|\begin{array}{cc}v_{1} & v_{3} \\ w_{1} & w_{3}\end{array}\right| \widehat{\mathbf{j}}+\left|\begin{array}{cc}v_{1} & v_{2} \\ w_{1} & w_{2}\end{array}\right| \widehat{\mathbf{k}}$
- Nonzero nonparallel vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3} \Longrightarrow \mathbf{v} \times \mathbf{w}$ is orthogonal to both $\mathbf{v} \& \mathbf{w}$.
- $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$, where the angle between the two vectors $\theta \in[0, \pi]$ and nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$
- RIGHT-HAND RULE:

Point right arm along $\mathbf{v} \&$ curl fingers toward \mathbf{w} to cover angle θ, then thumb points in the direction of $\mathbf{v} \times \mathbf{w}$.

- Notice that the cross product $\mathbf{v} \times \mathbf{w}$ is a vector orthogonal to both vectors $\mathbf{v} \& \mathbf{w}$.
- Nonzero vectors \mathbf{v}, \mathbf{w} are parallel $\Longleftrightarrow \mathbf{v} \times \mathbf{w}=\overrightarrow{\mathbf{0}}$

PROPERTIES OF CROSS PRODUCTS: (Let vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ and scalars $s, t \in \mathbb{R}$)

- $(s \mathbf{v}) \times(t \mathbf{w})=s t(\mathbf{v} \times \mathbf{w})$
- $\mathrm{v} \times \overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}} \times \mathrm{v}=\overrightarrow{\mathbf{0}}$
- $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$
- $\mathbf{v} \times \mathbf{v}=\overrightarrow{\mathbf{0}}$
- $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
- $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w})$
- $\|\mathbf{v} \times \mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}\|\mathbf{w}\|^{2}-(\mathbf{v} \cdot \mathbf{w})^{2}$
- $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{a}) \mathbf{c}$

CROSS PRODUCTS \& AREA:

- DEFINITION: Vertices $A, B, C \in \mathbb{R}^{3}$ are called collinear if all three vertices lie on the same straight line.
- Given a parallelogram generated by nonzero nonparallel vectors $\{\mathbf{A B}, \mathbf{A C}\}$, then:

$$
\text { AREA OF PARALLELOGRAM }(\mathbf{A B}, \mathbf{A C})=\|\mathbf{A B} \times \mathbf{A C}\|
$$

- Given a triangle generated by distinct noncollinear vertices $\{A, B, C\}$, then:

AREA OF TRIANGLE $(A, B, C)=\frac{1}{2}\|\mathbf{A B} \times \mathbf{A C}\|$

SCALAR TRIPLE PRODUCT \& VOLUME:

- DEFINITION: Vertices $A, B, C, D \in \mathbb{R}^{3}$ are called coplanar if all four vertices lie on the same plane.
- DEFINITION: Vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ are called coplanar if all three vectors lie in the same plane.
- Given a parallelopiped generated by nonzero noncoplanar vectors $\{\mathrm{AB}, \mathrm{AC}, \mathrm{AD}\}$, then:

$$
\operatorname{VOLUME} \text { OF PARALLELOPIPED }(\mathbf{A B}, \mathbf{A C}, \mathbf{A D})=|(\mathbf{A B} \times \mathbf{A C}) \cdot \mathbf{A D}|
$$

- Given a tetrahedron generated by distinct noncoplanar vertices $\{A, B, C, D\}$, then:

$$
\operatorname{VOLUME} \text { OF TETRAHEDRON }(A, B, C, D)=\frac{1}{6}|(\mathbf{A B} \times \mathbf{A C}) \cdot \mathbf{A D}|
$$

EX 9.4.1: Given vectors $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=2 \widehat{\mathbf{i}}-\widehat{\mathbf{j}}-\widehat{\mathbf{k}}$,
(a) Find $\mathbf{v} \times \mathbf{w}$.
(b) Find $\mathbf{w} \times \mathbf{v}$.
(c) Find the area of the parallelogram generated by vectors $\{\mathbf{v}, \mathbf{w}\}$.

EX 9.4.2: Given vectors $\mathbf{v}=\widehat{\mathbf{i}}-2 \widehat{\mathbf{k}}$ and $\mathbf{w}=\langle 0,2,-2\rangle$,
(a) Find $\mathbf{v} \times \mathbf{w} . \quad$ (b) Find $[(2 \mathbf{v}) \times(3 \mathbf{w})] \cdot(4 \widehat{\mathbf{k}})$
(c) Find $\sin \theta$, where $\theta \in[0, \pi]$ is the angle between vectors $\mathbf{v} \& \mathbf{w}$.

EX 9.4.3: Find the area of the triangle generated by vertices $A(0,-1,2), B(3,2,1), C(5,4,6)$.

EX 9.4.4: Find the volume of the parallelopiped generated by vectors $\mathbf{u}=\langle 1,2,3\rangle, \mathbf{v}=\langle 4,0,-5\rangle, \mathbf{w}=\langle 0,-3,1\rangle$.

EX 9.4.5: Let $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle-3,1,-2\rangle$. Find a unit vector $\widehat{\mathbf{u}}$ such that $\widehat{\mathbf{u}}$ is orthogonal to both $\mathbf{v} \& \mathbf{w}$.

EX 9.4.6: Explain (briefly) why the following expression makes no sense: $(\mathbf{u} \times \mathbf{v})-(\mathbf{u} \times \mathbf{u})$, where $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$.

EX 9.4.7: Explain (briefly) why the following expression makes no sense: $(\mathbf{u} \times \mathbf{v})-(\mathbf{u} \cdot \mathbf{v})$, where $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$.

EX 9.4.8: Explain (briefly) why the following expression makes no sense: $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$, where $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$.

