- EXPLICIT RECTANGULAR CURVES IN \mathbb{R}^{2} :
- Form: $y=f(x)$ OR $x=g(y)$
- Examples: $y=1+x^{4}, y=\tan (3 x), x=\sqrt[3]{2 y-1}, x=-\log y, \ldots$
- REMARK: Such curves never touch or cross themselves.
- IMPLICIT RECTANGULAR CURVES IN \mathbb{R}^{2} :
- Form: $F(x, y)=k$, where $k \in \mathbb{R}$.
- Examples: $x^{2}-3 y^{2}=5, \sin (x y)+x y=1,\left(x^{2}+y^{2}\right)^{2}-4 x^{2} y=0, \ldots$
- REMARK: Often, rewriting an implicit form to explicit form is impossible.
- EXPLICIT POLAR CURVES IN \mathbb{R}^{2} :
- Form: $r=f(\theta)$ OR $\theta=k$, where $k \in \mathbb{R}$.
- Examples: $r=3, r=e^{\theta}, r=1-4 \sin \theta, \theta=\pi / 3, \ldots$
- IMPLICIT POLAR CURVES IN \mathbb{R}^{2} :
- Form: $F(r, \theta)=k$, where $k \in \mathbb{R}$.
- Examples: $e^{r \theta}=1, r^{2}=4 \sin \theta, r+r^{2} \sin (3 \theta)=0, \ldots$
- PARAMETRIC CURVES IN \mathbb{R}^{2} :
- Form: $\left\{\begin{array}{l}x=f(t) \\ y=g(t) \\ t \in I\end{array}\right.$, where $\begin{array}{l}I \text { is an interval } \\ f, g \in C(I)\end{array}$
- Idea: Each point (x, y) on the curve (on the $x y$-plane) depends on a parameter, $t \in \mathbb{R}$.
- DEFINITION: A particular choice of f, g and I is called a parameterization of the curve.
- REMARK: There exist curves for which no simple parameterization can be determined.
- REMARK: Parameterizations are not unique!
- PARAMETRIC CURVES IN \mathbb{R}^{3} :
- Form: $\left\{\begin{array}{l}x=f(t) \\ y=g(t) \\ z=h(t) \\ t \in I\end{array}\right.$, where $\begin{array}{l}I \text { is an interval } \\ f, g, h \in C(I)\end{array}$
- Idea: Each point (x, y, z) on the curve (in $x y z$-space) depends on a parameter, $t \in \mathbb{R}$.
- Similar definition \& remarks apply in \mathbb{R}^{3} as they did in \mathbb{R}^{2}.
- 3D parametric lines will be considered here, other 3D parametric curves will be seen in Chapter 10.
- TYPICAL NOTATION FOR PARAMETERS: $s, t, \lambda, \mu, \theta, \phi$

CONVERSION	DIFFICULTY	PROCEDURE
2D Parametric \rightarrow Rectangular	Depends on solvability of t	Solve for t in one eqn and substitute into the other eqn. Restrict the ranges of $x \& y$ if necessary.
Explicit Rectangular \rightarrow 2D Parametric	Always works	$y=f(x) \Longrightarrow\left\{\begin{array}{l}x=t \\ y=f(t) \quad x=g(y) \Longrightarrow\left\{\begin{array}{l}x=g(t) \\ t \in \operatorname{Dom}(f)\end{array}\right. \\ y=t \\ t \in \operatorname{Dom}(g)\end{array}\right.$
Explicit Polar \rightarrow 2D Parametric	Always works	$r=f(\theta) \Longrightarrow\left\{\begin{array}{l}x=f(\theta) \cos \theta \\ y=f(\theta) \sin \theta \\ \theta \in \operatorname{Dom}(f)\end{array}\right.$

*** ALL OTHER CONVERSION POSSIBILITIES ARE TOO DIFFICULT, SO NOT CONSIDERED HERE

LINES IN SPACE [SST 9.5]

- LINES IN \mathbb{R}^{2} :

- The equation of a line as presented in algebra (e.g. $y=m x+b, \ldots$) is inadequate for 3D.
- Parametric Form of Line ℓ in $\mathbb{R}^{2}:\left\{\begin{array}{ll}x=x_{0}+v_{1} t \\ y=y_{0}+v_{2} t \\ t \in \mathbb{R}\end{array}\right.$, where $\quad \begin{array}{l}\text { Line } \ell \| \text { vector } \mathbf{v}:=\left\langle v_{1}, v_{2}\right\rangle \\ \text { Line } \ell \text { contains point } P_{0}\left(x_{0}, y_{0}\right)\end{array}$
- If given two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, form vector $\mathbf{v}=\mathbf{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$

- LINES IN \mathbb{R}^{3} :

- Parametric Form of Line ℓ in $\mathbb{R}^{3}:\left\{\begin{array}{ll}x=x_{0}+v_{1} t \\ y=y_{0}+v_{2} t \\ z=z_{0}+v_{3} t \\ t \in \mathbb{R}\end{array}\right.$, where $\quad \begin{array}{l}\text { Line } \ell \| \text { vector } \mathbf{v}:=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \\ \text { Line } \ell \text { contains point } P_{0}\left(x_{0}, y_{0}, z_{0}\right)\end{array}$
- If given two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$, form vector $\mathbf{v}=\mathbf{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$
- Symmetric Form of Line ℓ in $\mathbb{R}^{3}: \frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}}$
* Do not use the symmetric form since it can't handle vectors parallel to an axis: $\left\langle 0, v_{2}, v_{3}\right\rangle,\left\langle v_{1}, 0, v_{3}\right\rangle,\left\langle v_{1}, v_{2}, 0\right\rangle$
* Therefore, convert symmetric form to parametric form.
- PROPERTIES OF LINES IN $\mathbb{R}^{3}:$ Given lines $\ell_{1}:\left\{\begin{array}{l}x=x_{1}+v_{1} t \\ y=y_{1}+v_{2} t \\ z=z_{1}+v_{3} t \\ t \in \mathbb{R}\end{array}\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=x_{2}+w_{1} s \\ y=y_{2}+w_{2} s \\ z=z_{2}+w_{3} s \\ s \in \mathbb{R}\end{array}\right.$
\star Lines ℓ_{1}, ℓ_{2} are perpendicular $\Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=0$
\star Lines ℓ_{1}, ℓ_{2} are parallel $\Longleftrightarrow \mathbf{v} \| \mathbf{w} \Longleftrightarrow \mathbf{v}=k \mathbf{w}$, for some $k \in \mathbb{R}$
\star Lines ℓ_{1}, ℓ_{2} are intersecting \Longleftrightarrow linear system $\left\{\begin{array}{l}x_{1}+v_{1} t=x_{2}+w_{1} s \\ y_{1}+v_{2} t=y_{2}+w_{2} s \quad \text { has a unique solution for }(t, s) \text {. } \\ z_{1}+v_{3} t=z_{2}+w_{3} s\end{array}\right.$.
\star Lines ℓ_{1}, ℓ_{2} are coincident \Longleftrightarrow linear system $\left\{\begin{array}{l}x_{1}+v_{1} t=x_{2}+w_{1} s \\ y_{1}+v_{2} t=y_{2}+w_{2} s \\ z_{1}+v_{3} t=z_{2}+w_{3} s\end{array}\right.$ has infinitely many solutions for (t, s).
\star Lines ℓ_{1}, ℓ_{2} are skew $\Longleftrightarrow \ell_{1}, \ell_{2}$ do not intersect and are not parallel.
- DISTANCE FROM A POINT TO A LINE: Given point P and line ℓ

1. Construct vector \mathbf{v} parallel to line ℓ.
2. Pick any point Q on the line ℓ.
3. Form vector QP.
4. $($ Distance from point P to line $\ell)=\frac{\|\mathbf{v} \times \mathbf{Q P}\|}{\|\mathbf{v}\|}$

EX 9.5.1: Convert the parametric curve $\left\{\begin{array}{l}x=3 t-7 \\ y=2 t+1 \\ t \in \mathbb{R}\end{array}\right.$ to rectangular form.

EX 9.5.2: Convert the parametric curve $\left\{\begin{array}{l}x=\csc t \\ y=2 \sin t \\ t \in(0, \pi / 2)\end{array}\right.$ to rectangular form.

EX 9.5.3: Convert the parametric curve $\left\{\begin{array}{l}x=3 \sec \theta \\ y=5 \tan \theta \\ -\infty<\theta<\infty\end{array}\right.$ to rectangular form.

EX 9.5.4: Convert the parametric curve $\left\{\begin{array}{l}x=\frac{1}{\sqrt{t+1}} \\ y=\frac{t}{t+1} \\ t>-1\end{array}\right.$ to rectangular form.

EX 9.5.6: Convert the rectangular curve $x=\sqrt{y}$ to parametric form.

EX 9.5.7: Convert the polar curve $r=1-2 \sin \theta$ to parametric form.

EX 9.5.8: Find a parametric form for the line ℓ that contains point $P(1,2,-3)$ and is parallel to vector $\mathbf{v}=4 \widehat{\mathbf{i}}-3 \widehat{\mathbf{j}}+2 \widehat{\mathbf{k}}$.

EX 9.5.9: Find a parametric form for the line ℓ that contains point $P(-2,1,-5)$ and is parallel to line $\left\{\begin{array}{l}x=1+t \\ y=2-t \\ z=-3+7 t \\ t \in \mathbb{R}\end{array}\right.$.

EX 9.5.10: Find a parametric form for the line ℓ that contains points $P(1,2,-3)$ and $Q(7,6,8)$.

EX 9.5.11: Are lines $\ell_{1}:\left\{\begin{array}{l}x=-2+3 t \\ y=-2 t \\ z=1+4 t \\ t \in \mathbb{R}\end{array} \quad\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=3+5 s \\ y=-1-s \\ z=4+3 s \\ s \in \mathbb{R}\end{array}\right.$ parallel, intersecting, coincident, or skew?

EX 9.5.12: Are lines $\ell_{1}:\left\{\begin{array}{l}x=1+t \\ y=6-2 t \\ z=10-2 t \\ t \in \mathbb{R}\end{array}\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=3-2 s \\ y=-1+4 s \\ z=12+4 s \\ s \in \mathbb{R}\end{array}\right.$ parallel, intersecting, coincident, or skew?

EX 9.5.13: Are lines $\ell_{1}:\left\{\begin{array}{l}x=1+t \\ y=-2+3 t \\ z=4-t \\ t \in \mathbb{R}\end{array} \quad\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=2 s \\ y=3+s \\ z=-3+4 s \\ s \in \mathbb{R}\end{array}\right.$ parallel, intersecting, coincident, or skew?

EX 9.5.14: Are lines $\ell_{1}:\left\{\begin{array}{l}x=1+t \\ y=-2+3 t \\ z=4-t \\ t \in \mathbb{R}\end{array}\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=11-s \\ y=28-3 s \\ z=-6+s \\ s \in \mathbb{R}\end{array}\right.$ parallel, intersecting, coincident, or skew?

EX 9.5.15: Find the distance from the point $P(-2,4,6)$ to the line $\ell:\left\{\begin{array}{l}x=1+t \\ y=-2+3 t \\ z=4-t \\ t \in \mathbb{R}\end{array}\right.$

