PARAMETRIC CURVES [SST 9.5]

• EXPLICIT RECTANGULAR CURVES IN \mathbb{R}^2 :

- Form: y = f(x) OR x = g(y)
- Examples: $y = 1 + x^4$, $y = \tan(3x)$, $x = \sqrt[3]{2y 1}$, $x = -\log y$, ...
- REMARK: Such curves never touch or cross themselves.

• <u>IMPLICIT RECTANGULAR CURVES IN \mathbb{R}^2 :</u>

- Form: F(x, y) = k, where $k \in \mathbb{R}$.
- Examples: $x^2 3y^2 = 5$, $\sin(xy) + xy = 1$, $(x^2 + y^2)^2 4x^2y = 0$, ...
- REMARK: Often, rewriting an implicit form to explicit form is impossible.

• **EXPLICIT POLAR CURVES IN** \mathbb{R}^2 :

- Form: $r = f(\theta)$ OR $\theta = k$, where $k \in \mathbb{R}$.
- Examples: r = 3, $r = e^{\theta}$, $r = 1 4\sin\theta$, $\theta = \pi/3$, ...

• IMPLICIT POLAR CURVES IN \mathbb{R}^2 :

- Form: $F(r, \theta) = k$, where $k \in \mathbb{R}$.
- Examples: $e^{r\theta} = 1$, $r^2 = 4\sin\theta$, $r + r^2\sin(3\theta) = 0$, ...

• **PARAMETRIC CURVES IN** \mathbb{R}^2 :

- Form:
$$\begin{cases} x = f(t) & I \text{ is an interval} \\ y = g(t) & \text{, where} \\ t \in I & f, g \in C(I) \end{cases}$$

- Idea: Each point (x, y) on the curve (on the xy-plane) depends on a **parameter**, $t \in \mathbb{R}$.
- DEFINITION: A particular choice of f, g and I is called a **parameterization** of the curve.
- REMARK: There exist curves for which no simple parameterization can be determined.
- REMARK: Parameterizations are not unique!

• **PARAMETRIC CURVES IN** \mathbb{R}^3 :

- Form:
$$\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \end{cases}$$
, where I is an **interval**
 $f, g, h \in C(I)$
 $t \in I$

- Idea: Each point (x, y, z) on the curve (in xyz-space) depends on a **parameter**, $t \in \mathbb{R}$.
- Similar definition & remarks apply in \mathbb{R}^3 as they did in \mathbb{R}^2 .
- 3D parametric lines will be considered here, other 3D parametric curves will be seen in Chapter 10.

• **<u>TYPICAL NOTATION FOR PARAMETERS</u>**: $s, t, \lambda, \mu, \theta, \phi$

CONVERSION	DIFFICULTY	PROCEDURE			
2D Parametria A Postangular	Depends on solvability of t	Solve for t in one eqn and substitute into the other eqn.			
$2D$ Tarametric \rightarrow Rectangular	Depends on solvability of t	Restrict the ranges of $x \& y$ if necessary.			
Explicit Rectangular $\rightarrow 2D$ Parametric	Always works	$y = f(x) \implies \begin{cases} x = t \\ y = f(t) \\ t \in \text{Dom}(f) \end{cases} x = g(y) \implies \begin{cases} x = g(t) \\ y = t \\ t \in \text{Dom}(g) \end{cases}$			
Explicit Polar \rightarrow 2D Parametric	Always works	$r = f(\theta) \implies \begin{cases} x = f(\theta) \cos \theta \\ y = f(\theta) \sin \theta \\ \theta \in \text{Dom}(f) \end{cases}$			

*** ALL OTHER CONVERSION POSSIBILITIES ARE TOO DIFFICULT, SO NOT CONSIDERED HERE ***

©2013 Josh Engwer – Revised August 15, 2014

LINES IN SPACE [SST 9.5]

• LINES IN \mathbb{R}^2 :

- The equation of a line as presented in algebra (e.g. y = mx + b, ...) is inadequate for 3D.

_	Parametric Form of Line ℓ in \mathbb{R}^2 :	($x = x_0 + v_1 t$ $y = y_0 + v_2 t$ $t \in \mathbb{R}$, where	Line $\ell \mid\mid$ vector $\mathbf{v} := \langle v_1, v_2 \rangle$ Line ℓ contains point $P_0(x_0, y_0)$
---	--	---	--	---------	--

- If given two points $P(x_1, y_1)$ and $Q(x_2, y_2)$, form vector $\mathbf{v} = \mathbf{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$

• LINES IN \mathbb{R}^3 :

- $\operatorname{Parametric Form of Line } \ell \text{ in } \mathbb{R}^3 \colon \begin{cases} x = x_0 + v_1 t \\ y = y_0 + v_2 t \\ z = z_0 + v_3 t \\ t \in \mathbb{R} \end{cases}, \text{ where } \begin{array}{l} \operatorname{Line } \ell \mid\mid \text{vector } \mathbf{v} := \langle v_1, v_2, v_3 \rangle \\ \operatorname{Line } \ell \text{ contains point } P_0(x_0, y_0, z_0) \end{cases}$
- If given two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, form vector $\mathbf{v} = \mathbf{PQ} = \langle x_2 x_1, y_2 y_1, z_2 z_1 \rangle$
- Symmetric Form of Line ℓ in \mathbb{R}^3 : $\frac{x-x_0}{v_1}=\frac{y-y_0}{v_2}=\frac{z-z_0}{v_3}$
 - * Do not use the symmetric form since it can't handle vectors parallel to an axis: $\langle 0, v_2, v_3 \rangle$, $\langle v_1, 0, v_3 \rangle$, $\langle v_1, v_2, 0 \rangle$
 - * Therefore, convert symmetric form to parametric form.

• **PROPERTIES OF LINES IN**
$$\mathbb{R}^3$$
: Given lines $\ell_1 : \begin{cases} x = x_1 + v_1 t \\ y = y_1 + v_2 t \\ z = z_1 + v_3 t \\ t \in \mathbb{R} \end{cases}$ and $\ell_2 : \begin{cases} x = x_2 + w_1 s \\ y = y_2 + w_2 s \\ z = z_2 + w_3 s \\ s \in \mathbb{R} \end{cases}$

- * Lines ℓ_1, ℓ_2 are **perpendicular** \iff $\mathbf{v} \cdot \mathbf{w} = 0$
- * Lines ℓ_1, ℓ_2 are **parallel** \iff **v** || **w** \iff **v** = k**w**, for some $k \in \mathbb{R}$
- $\star \text{ Lines } \ell_1, \ell_2 \text{ are intersecting } \iff \text{ linear system } \begin{cases} x_1 + v_1 t = x_2 + w_1 s \\ y_1 + v_2 t = y_2 + w_2 s \\ z_1 + v_3 t = z_2 + w_3 s \end{cases} \text{ has a unique solution for } (t, s).$ $\star \text{ Lines } \ell_1, \ell_2 \text{ are coincident } \iff \text{ linear system } \begin{cases} x_1 + v_1 t = x_2 + w_1 s \\ y_1 + v_2 t = y_2 + w_2 s \\ z_1 + v_3 t = z_2 + w_3 s \end{cases} \text{ has infinitely many solutions for } (t, s).$
- * Lines ℓ_1, ℓ_2 are **skew** $\iff \ell_1, \ell_2$ do not intersect and are not parallel.

• **DISTANCE FROM A POINT TO A LINE:** Given point P and line ℓ

- 1. Construct vector ${\bf v}$ parallel to line $\ell.$
- 2. Pick any point Q on the line $\ell.$
- 3. Form vector **QP**.

4. (Distance from point P to line
$$\ell$$
) = $\frac{||\mathbf{v} \times \mathbf{QP}||}{||\mathbf{v}||}$

 $[\]textcircled{O}2013$ Josh Engwer – Revised August 15, 2014

EX 9.5.1: Convert the parametric curve $\begin{cases} x = 3t - 7\\ y = 2t + 1 & \text{to rectangular form.} \\ t \in \mathbb{R} \end{cases}$

	$\int x = 3 \sec \theta$	
<u>EX 9.5.3</u> : Convert the parametric curve	$y = 5 \tan \theta$	to rectangular form.
	$(-\infty < \theta < \infty)$	

EX 9.5.4: Convert the parametric curve
$$\begin{cases} x = \frac{1}{\sqrt{t+1}} \\ y = \frac{t}{t+1} \\ t > -1 \end{cases}$$
 to rectangular form.

EX 9.5.5: Convert the rectangular curve $y = x^2 + x + 3$ to parametric form.

<u>EX 9.5.6</u> Convert the rectangular curve $x = \sqrt{y}$ to parametric form.

<u>EX 9.5.7</u>: Convert the polar curve $r = 1 - 2\sin\theta$ to parametric form.

EX 9.5.8: Find a parametric form for the line ℓ that contains point P(1, 2, -3) and is parallel to vector $\mathbf{v} = 4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$.

	x = 1 + t
<u>EX 9.5.9</u> Find a parametric form for the line ℓ that contains point $P(-2, 1, -5)$ and is parallel to line	$\begin{cases} y = 2 - t \\ z = -3 + 7t \\ t \in \mathbb{R} \end{cases}$

<u>EX 9.5.10</u> Find a parametric form for the line ℓ that contains points P(1, 2, -3) and Q(7, 6, 8).

C2013Josh Engwer – Revised August 15, 2014

$$\boxed{\textbf{EX 9.5.11:}} \text{ Are lines } \ell_1 : \begin{cases} x = -2 + 3t \\ y = -2t \\ z = 1 + 4t \\ t \in \mathbb{R} \end{cases} \text{ and } \ell_2 : \begin{cases} x = 3 + 5s \\ y = -1 - s \\ z = 4 + 3s \\ s \in \mathbb{R} \end{cases} \text{ parallel, intersecting, coincident, or skew?}$$

	$\int x = 1 + t$	1	x = 3 - 2s	
EX 9.5.12: Are lines ℓ_1 : \langle	y = 6 - 2t	and ℓ_2 : \langle	y = -1 + 4s	parallel intersecting coincident or skow?
	z = 10 - 2t		z = 12 + 4s	paraner, intersecting, concident, or skew:
	$t \in \mathbb{R}$		$s \in \mathbb{R}$	

	x = 1 + t	$\int x = 2s$
EX 9.5.13 . Are lines l_1 .	$y = -2 + 3t$ and ℓ_0 .	y = 3 + s parallel intersecting coincident or skew?
<u>EX 3.5.15.</u> Are lines c_1 .	z = 4 - t	z = -3 + 4s
	$t \in \mathbb{R}$	$s \in \mathbb{R}$

$$\boxed{\textbf{EX 9.5.14:}} \text{ Are lines } \ell_1 : \begin{cases} x = 1+t \\ y = -2+3t \\ z = 4-t \\ t \in \mathbb{R} \end{cases} \text{ and } \ell_2 : \begin{cases} x = 11-s \\ y = 28-3s \\ z = -6+s \\ s \in \mathbb{R} \end{cases} \text{ parallel, intersecting, coincident, or skew?}$$

	x = 1 + t
EX 9.5.15: Find the distance from the point $P(-2, 4, 6)$ to the line ℓ .	y = -2 + 3t
	z = 4 - t
	$t \in \mathbb{R}$