- EQUATIONS OF PLANES:
- Standard Form of a Plane $\mathbb{P}: \quad A x+B y+C z+D=0, \quad$ where $A, B, C, D \in \mathbb{R}$
- CASE I: Given the normal vector $\mathbf{n}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ and one point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$:

1. Let components of normal vector $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be the coefficients of x, y, z in standard form of plane.
2. Substitute the given point (x_{0}, y_{0}, z_{0}) into x, y, z respectively.
3. Solve the resulting equation for D.

- CASE II: Given three points $P\left(x_{1}, y_{1}, z_{1}\right), Q\left(x_{2}, y_{2}, z_{2}\right)$, and $R\left(x_{3}, y_{3}, z_{3}\right)$:

1. Form vector $\mathbf{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$
2. Form vector $\mathbf{P R}=\left\langle x_{3}-x_{1}, y_{3}-y_{1}, z_{3}-z_{1}\right\rangle$
3. Form normal vector \mathbf{n} using a cross product: $\mathbf{n}=\mathbf{P Q} \times \mathbf{P R}$
4. Using normal vector \mathbf{n} and one of the three given points P, Q, R, follow CASE I.

- CASE III: Given two intersecting lines ℓ_{1}, ℓ_{2} :

1. Form vectors \mathbf{v}, \mathbf{w} parallel to lines ℓ_{1}, ℓ_{2} respectively.
2. Form normal vector to the plane: $\mathbf{n}=\mathbf{v} \times \mathbf{w}$.
3. Pick any point P on either line ℓ_{1} or ℓ_{2}.
4. Using normal vector \mathbf{n} and point P, follow CASE I.

- EQUATION OF LINE PASSING THRU A POINT THAT'S ORTHOGONAL TO A PLANE:

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $\mathbb{P}: A x+B y+C z+D=0$

1. Form normal vector to the plane: $\mathbf{n}=\langle A, B, C\rangle$.
2. Equation of line is: $\left\{\begin{array}{l}x=x_{0}+A t \\ y=y_{0}+B t \\ z=z_{0}+C t \\ t \in \mathbb{R}\end{array}\right.$
3. Substitute equation of line into equation of plane and solve for the parameter, t.
4. Plug value of parameter t into equation of line to determine the point where the line intersects the plane.

- DISTANCE BETWEEN A POINT AND A PLANE:

Given point P and plane $\mathbb{P}: A x+B y+C z+D=0$

1. Form normal vector to the plane: $\mathbf{n}=\langle A, B, C\rangle$.
2. Pick any point Q on the plane.
3. Form vector QP.
4. $($ Distance between point P and plane $\mathbb{P})=\frac{|\mathbf{Q P} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$

- DISTANCE BETWEEN TWO PARALLEL PLANES:

Given two parallel planes $\mathbb{P}_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \mathbb{P}_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0$

1. Form normal vector to plane $\mathbb{P}_{1}: \mathbf{n}=\left\langle A_{1}, B_{1}, C_{1}\right\rangle$
2. Pick any point P on plane \mathbb{P}_{2}.
3. Find distance between point P and plane \mathbb{P}_{1}.

EX 9.6.2: Find the equation for the plane normal to vector $\mathbf{n}=\langle 1,2,3\rangle$ and containing point $P(-3,4,-2)$.

EX 9.6.3: Find the equation for the plane normal to vector $\mathbf{n}=7 \widehat{\mathbf{j}}-9 \widehat{\mathbf{k}}$ and containing point $P(4,4,-7)$.

EX 9.6.4: Find the equation for the plane normal to vector $\mathbf{n}=8 \widehat{\mathbf{i}}$ and containing point $P(-9,-11,-13)$.

EX 9.6.5: Find the equation for the plane containing points $P(1,2,-2), Q(-3,1,1)$, and $R(1,2,3)$.

EX 9.6.6: Find the equation of the plane determined by the intersecting lines $\ell_{1}:\left\{\begin{array}{l}x=7 t \\ y=1-8 t \\ z=-1-5 t \\ t \in \mathbb{R}\end{array}\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=4+3 s \\ y=-2+s \\ z=5+9 s \\ s \in \mathbb{R}\end{array}\right.$

EX 9.6.7: (a) Find an equation of the line containing point $P(10,-3,-1)$ that's orthogonal to plane $x+6 y-3 z-18=0$. (b) Where does the line intersect the plane?

EX 9.6.8: Find the distance from the point $P(3,-9,4)$ to the plane $3 x-y+5 z-11=0$.

EX 9.6.9: Find the distance between parallel planes $\mathbb{P}_{1}: x-7 y+8 z-2=0$ and $\mathbb{P}_{2}:-3 x+21 y-24 z+11=0$.

