SOLID ANALYTIC GEOMETRY: PLANES [SST 9.6]

• EQUATIONS OF PLANES:

- **Standard Form of a Plane** \mathbb{P} : Ax + By + Cz + D = 0, where $A, B, C, D \in \mathbb{R}$
- CASE I: Given the normal vector $\mathbf{n} = \langle n_1, n_2, n_3 \rangle$ and one point $P_0(x_0, y_0, z_0)$:
 - 1. Let components of normal vector $\langle n_1, n_2, n_3 \rangle$ be the coefficients of x, y, z in standard form of plane.
 - 2. Substitute the given point (x_0, y_0, z_0) into x, y, z respectively.
 - 3. Solve the resulting equation for D.
- CASE II: Given three points $P(x_1, y_1, z_1)$, $Q(x_2, y_2, z_2)$, and $R(x_3, y_3, z_3)$:
 - 1. Form vector $\mathbf{PQ} = \langle x_2 x_1, y_2 y_1, z_2 z_1 \rangle$
 - 2. Form vector $\mathbf{PR} = \langle x_3 x_1, y_3 y_1, z_3 z_1 \rangle$
 - 3. Form normal vector **n** using a cross product: $\mathbf{n} = \mathbf{P}\mathbf{Q} \times \mathbf{P}\mathbf{R}$
 - 4. Using normal vector \mathbf{n} and one of the three given points P, Q, R, follow CASE I.
- CASE III: Given two intersecting lines ℓ_1, ℓ_2 :
 - 1. Form vectors \mathbf{v} , \mathbf{w} parallel to lines ℓ_1, ℓ_2 respectively.
 - 2. Form normal vector to the plane: $\mathbf{n} = \mathbf{v} \times \mathbf{w}$.
 - 3. Pick any point P on either line ℓ_1 or ℓ_2 .
 - 4. Using normal vector \mathbf{n} and point P, follow CASE I.

• EQUATION OF LINE PASSING THRU A POINT THAT'S ORTHOGONAL TO A PLANE:

Given point $P_0(x_0, y_0, z_0)$ and plane $\mathbb{P} : Ax + By + Cz + D = 0$

1. Form normal vector to the plane: $\mathbf{n} = \langle A, B, C \rangle$.

2. Equation of line is:
$$\begin{cases} x = x_0 + At \\ y = y_0 + Bt \\ z = z_0 + Ct \\ t \in \mathbb{R} \end{cases}$$

- 3. Substitute equation of line into equation of plane and solve for the parameter, t.
- 4. Plug value of parameter t into equation of line to determine the point where the line intersects the plane.

• DISTANCE BETWEEN A POINT AND A PLANE:

Given point P and plane \mathbb{P} : Ax + By + Cz + D = 0

- 1. Form normal vector to the plane: $\mathbf{n} = \langle A, B, C \rangle$.
- 2. Pick any point Q on the plane.
- 3. Form vector **QP**.
- 4. (Distance between point P and plane \mathbb{P}) = $\frac{|\mathbf{QP} \cdot \mathbf{n}|}{||\mathbf{n}||}$

• DISTANCE BETWEEN TWO PARALLEL PLANES:

Given two parallel planes $\mathbb{P}_1: A_1x + B_1y + C_1z + D_1 = 0$, $\mathbb{P}_2: A_2x + B_2y + C_2z + D_2 = 0$

- 1. Form normal vector to plane \mathbb{P}_1 : $\mathbf{n} = \langle A_1, B_1, C_1 \rangle$
- 2. Pick any point P on plane \mathbb{P}_2 .
- 3. Find distance between point P and plane \mathbb{P}_1 .

^{©2013} Josh Engwer - Revised August 15, 2014

<u>EX 9.6.2</u>: Find the equation for the plane normal to vector $\mathbf{n} = \langle 1, 2, 3 \rangle$ and containing point P(-3, 4, -2).

<u>EX 9.6.3</u> Find the equation for the plane normal to vector $\mathbf{n} = 7\hat{\mathbf{j}} - 9\hat{\mathbf{k}}$ and containing point P(4, 4, -7).

<u>EX 9.6.4</u>: Find the equation for the plane normal to vector $\mathbf{n} = 8\hat{\mathbf{i}}$ and containing point P(-9, -11, -13).

EX 9.6.5: Find the equation for the plane containing points P(1, 2, -2), Q(-3, 1, 1), and R(1, 2, 3).

		x = 7t	1	x = 4 + 3s
EX 966.	Find the equation of the plane determined by the intersecting lines ℓ_1 :	y = 1 - 8t	and ℓ_2 : $\left\langle \right\rangle$	y = -2 + s
<u>EA 9.0.0.</u>		z = -1 - 5t		z = 5 + 9s
		$t \in \mathbb{R}$	l	$s \in \mathbb{R}$

EX 9.6.7:

(a) Find an equation of the line containing point P(10, -3, -1) that's orthogonal to plane x + 6y - 3z - 18 = 0. (b) Where does the line intersect the plane?

<u>EX 9.6.8</u> Find the distance from the point P(3, -9, 4) to the plane 3x - y + 5z - 11 = 0.

EX 9.6.9: Find the distance between parallel planes $\mathbb{P}_1: x - 7y + 8z - 2 = 0$ and $\mathbb{P}_2: -3x + 21y - 24z + 11 = 0$.