<u>EX 9.7.5</u> Identify & characterize quadric surface: $7y^2 - \frac{9}{16}x^2 - \frac{63}{16} = 0$ $7y^2 - \frac{9}{16}x^2 = \frac{63}{16}$ 1^{st} , collect & isolate all squared-variable terms: $7y^2 - \frac{9}{16}x^2 = \frac{63}{16} \implies \frac{16}{9}y^2 - \frac{1}{7}x^2 = 1 \implies \frac{y^2}{9/16} - \frac{x^2}{7} = 1$ 2^{nd} , manipulate equation until a **canonical form** is produced: 3^{rd} , use the heuristic presented in the 9.7 Slides to help identify quadric surface: THINK "cvlinder" Missing variable (z)THINK"hyperbolic/hyperboloid of one sheet"' Exactly one negative squared-variable term Hyperbolic Cylinder 4^{th} , combine these phrases in the only meaningful way: (Missing Variable) Axis of Generation: z-axis **EX 9.7.6:** Identify & characterize quadric surface: $3y^2 + 25z^2 - 75 = 0$ 1^{st} , collect & isolate all squared-variable terms: $3y^2 + 25z^2 = 75$ 2^{nd} , manipulate equation until a **canonical form** is produced: $3y^2 + 25z^2 = 75 \implies \frac{y^2}{25} + \frac{z^2}{3} = 1$ 3^{rd} , use the heuristic presented in the 9.7 Slides to help identify quadric surface: THINK "cylinder" Missing variable (x)THINK "elliptic/ellipsoid" All squared-variable terms are positive Elliptic Cylinder 4th, combine these phrases in the only meaningful way: Axis of Generation: *x*-axis (Missing Variable) **EX 9.7.9:** Identify & characterize quadric surface: $\pi^{8/5}x^2 - \pi^3z^2 - \pi^{23/5}y = 0$ $\pi^{23/5}y = \pi^{8/5}x^2 - \pi^3 z^2$ 1^{st} , collect & isolate all squared-variable terms: 2^{nd} , manipulate equation until a **canonical form** is produced: $\pi^{23/5}y = \pi^{8/5}x^2 - \pi^3z^2 \implies y = \frac{x^2}{\pi^3} - \frac{z^2}{\pi^{8/5}}$ 3^{rd} , use the heuristic presented in the 9.7 Slides to help identify quadric surface: THINKExactly one linear variable (y)"parabolic/paraboloid" $\stackrel{THINK}{\Longrightarrow}$ "hyperbolic/hyperboloid of one sheet" Exactly one negative squared-variable term Hyperbolic Paraboloid 4th, combine these phrases in the only meaningful way: (nothing to characterize) **<u>EX 9.7.10</u>** Identify & characterize quadric surface: $\frac{\sqrt[3]{10}}{5}x^2 - (\sqrt[3]{10})Qy^2 - \frac{Q}{5}z^2 - \frac{\sqrt[3]{10}}{5}Q = 0$, where Q > 0 $\frac{\sqrt[3]{10}}{5}x^2 - \left(\sqrt[3]{10}\right)Qy^2 - \frac{Q}{5}z^2 = \frac{\sqrt[3]{10}}{5}Q$ 1^{st} , collect & isolate all squared-variable terms: $\frac{x^2}{Q} - \frac{y^2}{1/5} - \frac{z^2}{\sqrt[3]{10}} = 1$ 2^{nd} , manipulate equation until a **canonical form** is produced: 3^{rd} , use the heuristic presented in the 9.7 Slides to help identify quadric surface: $\stackrel{THINK}{\Longrightarrow}$ "hyperboloid of two sheets" Exactly two negative squared-variable terms Hyperboloid of Two Sheets 4th, combine these phrases in the only meaningful way: Axis of Revolution: x-axis (Positive Squared-Variable Term)

©2013 Josh Engwer – Revised September 4, 2015