EX 9.7.5: Identify \& characterize quadric surface: $7 y^{2}-\frac{9}{16} x^{2}-\frac{63}{16}=0$
$1^{\text {st }}$, collect \& isolate all squared-variable terms: $\quad 7 y^{2}-\frac{9}{16} x^{2}=\frac{63}{16}$
$2^{\text {nd }}$, manipulate equation until a canonical form is produced: $\quad 7 y^{2}-\frac{9}{16} x^{2}=\frac{63}{16} \Longrightarrow \frac{16}{9} y^{2}-\frac{1}{7} x^{2}=1 \Longrightarrow \frac{y^{2}}{9 / 16}-\frac{x^{2}}{7}=1$ $3^{r d}$, use the heuristic presented in the 9.7 Slides to help identify quadric surface:

$4^{t h}$, combine these phrases in the only meaningful way:

Hyperbolic Cylinder
 Axis of Generation: z-axis (Missing Variable)

EX 9.7.6: Identify \& characterize quadric surface: $3 y^{2}+25 z^{2}-75=0$
$1^{\text {st }}$, collect \& isolate all squared-variable terms: $\quad 3 y^{2}+25 z^{2}=75$
$2^{\text {nd }}$, manipulate equation until a canonical form is produced: $\quad 3 y^{2}+25 z^{2}=75 \Longrightarrow \frac{y^{2}}{25}+\frac{z^{2}}{3}=1$
$3^{\text {rd }}$, use the heuristic presented in the 9.7 Slides to help identify quadric surface:

$4^{\text {th }}$, combine these phrases in the only meaningful way:
Elliptic Cylinder
Axis of Generation: x-axis (Missing Variable)

EX 9.7.9: Identify \& characterize quadric surface: $\pi^{8 / 5} x^{2}-\pi^{3} z^{2}-\pi^{23 / 5} y=0$
$1^{s t}$, collect \& isolate all squared-variable terms: $\quad \pi^{23 / 5} y=\pi^{8 / 5} x^{2}-\pi^{3} z^{2}$
$2^{\text {nd }}$, manipulate equation until a canonical form is produced: $\quad \pi^{23 / 5} y=\pi^{8 / 5} x^{2}-\pi^{3} z^{2} \Longrightarrow y=\frac{x^{2}}{\pi^{3}}-\frac{z^{2}}{\pi^{8 / 5}}$ $3^{\text {rd }}$, use the heuristic presented in the 9.7 Slides to help identify quadric surface:

Exactly one linear variable (y)	$\stackrel{T H I N K}{\Longrightarrow}$
Exactly one negative squared-variable term	$\stackrel{T H N}{\Longrightarrow}$

$4^{\text {th }}$, combine these phrases in the only meaningful way:

Hyperbolic Paraboloid
(nothing to characterize)

EX 9.7.10: Identify \& characterize quadric surface: $\frac{\sqrt[3]{10}}{5} x^{2}-(\sqrt[3]{10}) Q y^{2}-\frac{Q}{5} z^{2}-\frac{\sqrt[3]{10}}{5} Q=0$, where $Q>0$ $1^{\text {st }}$, collect \& isolate all squared-variable terms: $\quad \frac{\sqrt[3]{10}}{5} x^{2}-(\sqrt[3]{10}) Q y^{2}-\frac{Q}{5} z^{2}=\frac{\sqrt[3]{10}}{5} Q$ $2^{\text {nd }}$, manipulate equation until a canonical form is produced: $\quad \frac{x^{2}}{Q}-\frac{y^{2}}{1 / 5}-\frac{z^{2}}{\sqrt[3]{10}}=1$ $3^{r d}$, use the heuristic presented in the 9.7 Slides to help identify quadric surface:

$$
\text { Exactly two negative squared-variable terms } \stackrel{T H I N K}{\Longrightarrow} \text { "hyperboloid of two sheets" }
$$

$4^{\text {th }}$, combine these phrases in the only meaningful way:

Hyperboloid of Two Sheets
Axis of Revolution: x-axis (Positive Squared-Variable Term)

