SOLID ANALYTIC GEOMETRY: QUADRIC SURFACES [SST 9.7]

- GENERAL FORM: $A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0$, where $A, B, \ldots, I, J \in \mathbb{R}$
- The general form is much too general! Henceforth, focus only on the canonical forms below.

QUADRIC SURFACE	CANONICAL FORM(S)	KEY PROPERTIES
Sphere	$x^{2}+y^{2}+z^{2}=r^{2}$	Radius: r
Ellipsoid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$	Axial Radii: a, b, c
Parabolic Cylinder	$\begin{array}{lll} y=a x^{2} & \text { OR } & x=b y^{2} \\ z=b y^{2} & \text { OR } & y=c z^{2} \\ z=a x^{2} & \text { OR } & x=c z^{2} \end{array}$	Axis of Generation: Axis of omitted variable
Elliptic Cylinder	$\begin{aligned} & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\ & \frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=1 \\ & \frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \end{aligned}$	Axis of Generation: Axis of omitted variable
Hyperbolic Cylinder	$\begin{array}{lll} \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 & \text { OR } & \frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1 \\ \frac{x^{2}}{a^{2}}-\frac{z^{2}}{c^{2}}=1 & \text { OR } & \frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}=1 \\ \frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 & \text { OR } & \frac{z^{2}}{c^{2}}-\frac{y^{2}}{b^{2}}=1 \end{array}$	Axis of Generation: Axis of omitted variable
Elliptic Paraboloid	$\begin{aligned} & z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \\ & y=\frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}} \\ & x=\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \end{aligned}$	Axis of Revolution: Linear term
Elliptic Cone	$\begin{array}{r} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 \\ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0 \\ -\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0 \end{array}$	Axis of Revolution: Negative Square term
Hyperboloid of One Sheet	$\begin{array}{r} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \\ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \\ -\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \end{array}$	Axis of Revolution: Negative Square term
Hyperboloid of Two Sheets	$\begin{array}{r} -\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \\ -\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \\ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \end{array}$	Axis of Revolution: Positive Square term
Hyperbolic Paraboloid	$\begin{array}{lcc} z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}} & \text { OR } & z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} \\ y=\frac{x^{2}}{a^{2}}-\frac{z^{2}}{c^{2}} & \text { OR } & y=\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}} \\ x=\frac{z^{2}}{c^{2}}-\frac{y^{2}}{b^{2}} & \text { OR } & x=\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}} \end{array}$	

REMARK: All quadric surfaces tabulated above are centered at the origin ($0,0,0$).

- QUADRIC SURFACE IDENTIFICATION \rightarrow HEURISTICS:
- Collect \& isolate the squared-variable terms, then produce the canonical form.
- missing variable $\stackrel{\text { THINK }}{\Longrightarrow}$ "cylinder".
- linear term $\xrightarrow{\text { THINK }}$ "parabolic" or "paraboloid".
- all positive squared-variables $\xrightarrow{T H I N K} "$ elliptic" or "ellipsoid".
- any negative squared-variables $\xrightarrow{T H I N}{ }^{K}$ "hyperbolic" or "hyperboloid".

EX 9.7.2: Identify \& characterize quadric surface: $x^{2}+y^{2}=64-z^{2}$

EX 9.7.3: Identify \& characterize quadric surface: $45 x^{2}+36 y^{2}+20 z^{2}-180=0$

EX 9.7.4: Identify \& characterize quadric surface: $99 z-11 x^{2}-9 y^{2}=0$

EX 9.7.5: Identify \& characterize quadric surface: $7 y^{2}-\frac{9}{16} x^{2}-\frac{63}{16}=0$

EX 9.7.6: Identify \& characterize quadric surface: $3 y^{2}+25 z^{2}-75=0$

EX 9.7.7: Identify \& characterize quadric surface: $\frac{9}{4} x^{2}-18 y^{2}+8 z^{2}=0$

EX 9.7.8: Identify \& characterize quadric surface: $\pi \sqrt{5} x^{2}+4 \sqrt{5} y^{2}-4 \pi z^{2}-4 \pi \sqrt{5}=0$

EX 9.7.9: Identify \& characterize quadric surface: $\pi^{8 / 5} x^{2}-\pi^{3} z^{2}-\pi^{23 / 5} y=0$

EX 9.7.10: Identify \& characterize quadric surface: $\frac{\sqrt[3]{10}}{5} x^{2}-(\sqrt[3]{10}) Q y^{2}-\frac{Q}{5} z^{2}-\frac{\sqrt[3]{10}}{5} Q=0$, where $Q>0$

EX 9.7.11: Given the quadric surface $x=2 z^{2}$,
(a) Find the intersection of the quadric surface with the plane $z=3$
(b) Find the intersection of the quadric surface with the plane $y=-1$
(c) Find the intersection of the quadric surface with the plane $x=-2$
(d) Find the intersection of the quadric surface with the plane $x=0$
(e) Find the intersection of the quadric surface with the plane $x=2$
(a) Find the intersection of the quadric surface with the plane $x=0$
(b) Find the intersection of the quadric surface with the plane $x=\sqrt{2}$
(c) Find the intersection of the quadric surface with the plane $x=4$
(d) Find the intersection of the quadric surface with the plane $z=1$
(e) Find the intersection of the quadric surface with the plane $y=-\sqrt{3}$
(a) Find the intersection of the quadric surface with the plane $z=8$
(b) Find the intersection of the quadric surface with the plane $z=0$
(c) Find the intersection of the quadric surface with the plane $y=-3$
(d) Find the intersection of the quadric surface with the plane $y=0$
(e) Find the intersection of the quadric surface with the plane $x=0$
(f) Find the intersection of the quadric surface with the plane $x=-2$

