SOLID ANALYTIC GEOMETRY: QUADRIC SURFACES [SST 9.7]

• **<u>GENERAL FORM:</u>** $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$, where $A, B, \dots, I, J \in \mathbb{R}$

 $-\,$ The general form is much too general! Henceforth, focus only on the canonical forms below.

QUADRIC SURFACE	CANONICAL FORM(S)	KEY PROPERTIES
Sphere	$x^2 + y^2 + z^2 = r^2$	Radius: r
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Axial Radii: a, b, c
Parabolic Cylinder	$y = ax^{2} \text{OR} x = by^{2}$ $z = by^{2} \text{OR} y = cz^{2}$ $z = ax^{2} \text{OR} x = cz^{2}$	Axis of Generation: Axis of omitted variable
Elliptic Cylinder	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$ $\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Axis of Generation: Axis of omitted variable
Hyperbolic Cylinder	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{OR} \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 \text{OR} \frac{z^2}{c^2} - \frac{x^2}{a^2} = 1$ $\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \text{OR} \frac{z^2}{c^2} - \frac{y^2}{b^2} = 1$	Axis of Generation: Axis of omitted variable
Elliptic Paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ $y = \frac{x^2}{a^2} + \frac{z^2}{c^2}$ $x = \frac{y^2}{b^2} + \frac{z^2}{c^2}$	Axis of Revolution: Linear term
Elliptic Cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$	Axis of Revolution: Negative Square term
Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Axis of Revolution: Negative Square term
Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $-\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Axis of Revolution: Positive Square term
Hyperbolic Paraboloid	$z = \frac{y^2}{b^2} - \frac{x^2}{a^2} \text{OR} z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ $y = \frac{x^2}{a^2} - \frac{z^2}{c^2} \text{OR} y = \frac{z^2}{c^2} - \frac{x^2}{a^2}$ $x = \frac{z^2}{c^2} - \frac{y^2}{b^2} \text{OR} x = \frac{y^2}{b^2} - \frac{z^2}{c^2}$	

REMARK: All quadric surfaces tabulated above are centered at the origin (0, 0, 0).

• QUADRIC SURFACE IDENTIFICATION \rightarrow HEURISTICS:

- Collect & isolate the squared-variable terms, then produce the **canonical form**.
- missing variable $\stackrel{THINK}{\Longrightarrow}$ "cylinder".
- linear term $\stackrel{THINK}{\Longrightarrow}$ "parabolic" or "paraboloid".
- all positive squared-variables $\stackrel{THINK}{\Longrightarrow}$ "elliptic" or "ellipsoid".
- any negative squared-variables $\stackrel{THINK}{\Longrightarrow}$ "hyperbolic" or "hyperboloid".

^{©2013} Josh Engwer – Revised August 15, 2014

<u>EX 9.7.2</u>: Identify & characterize quadric surface: $x^2 + y^2 = 64 - z^2$

<u>EX 9.7.3</u>: Identify & characterize quadric surface: $45x^2 + 36y^2 + 20z^2 - 180 = 0$

<u>EX 9.7.4</u> Identify & characterize quadric surface: $99z - 11x^2 - 9y^2 = 0$

©2013 Josh Engwer – Revised August 15, 2014

EX 9.7.5: Identify & characterize quadric surface: $7y^2 - \frac{9}{16}x^2 - \frac{63}{16} = 0$

<u>EX 9.7.6</u> Identify & characterize quadric surface: $3y^2 + 25z^2 - 75 = 0$

<u>EX 9.7.7</u>: Identify & characterize quadric surface: $\frac{9}{4}x^2 - 18y^2 + 8z^2 = 0$

<u>EX 9.7.8:</u> Identify & characterize quadric surface: $\pi\sqrt{5}x^2 + 4\sqrt{5}y^2 - 4\pi z^2 - 4\pi\sqrt{5} = 0$

C2013Josh Engwer – Revised August 15, 2014

<u>EX 9.7.9</u>: Identify & characterize quadric surface: $\pi^{8/5}x^2 - \pi^3 z^2 - \pi^{23/5}y = 0$

EX 9.7.10: Identify & characterize quadric surface: $\frac{\sqrt[3]{10}}{5}x^2 - (\sqrt[3]{10})Qy^2 - \frac{Q}{5}z^2 - \frac{\sqrt[3]{10}}{5}Q = 0$, where Q > 0

<u>EX 9.7.11</u>: Given the quadric surface $x = 2z^2$,

(a) Find the intersection of the quadric surface with the plane z = 3

(b) Find the intersection of the quadric surface with the plane y = -1

(c) Find the intersection of the quadric surface with the plane x = -2

(d) Find the intersection of the quadric surface with the plane x = 0

(e) Find the intersection of the quadric surface with the plane x = 2

O2013Josh Engwer – Revised August 15, 2014

<u>EX 9.7.12</u> Given the quadric surface $\frac{x^2}{2} - \frac{y^2}{3} - \frac{z^2}{4} = 1$, (a) Find the intersection of the quadric surface with the plane x = 0

(b) Find the intersection of the quadric surface with the plane $x = \sqrt{2}$

(c) Find the intersection of the quadric surface with the plane x = 4

(d) Find the intersection of the quadric surface with the plane z = 1

(e) Find the intersection of the quadric surface with the plane $y = -\sqrt{3}$

C2013Josh Engwer – Revised August 15, 2014

EX 9.7.13: Given the quadric surface $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 0$, (a) Find the intersection of the quadric surface with the plane $z = 8$	
(b) Find the intersection of the quadric surface with the plane $z = 0$	
(c) Find the intersection of the quadric surface with the plane $y = -3$	
(d) Find the intersection of the quadric surface with the plane $y = 0$	

(e) Find the intersection of the quadric surface with the plane x = 0

(f) Find the intersection of the quadric surface with the plane x = -2