(a) In what direction is f increasing most rapidly from point $P(1,2)$?

First, use properties of logarithms to make differentiation easier: $f(x, y)=\ln \sqrt{x^{2}+y^{2}}=\ln \left(x^{2}+y^{2}\right)^{1 / 2}=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$
$\nabla f=\left\langle\frac{1}{2} \cdot \frac{2 x}{x^{2}+y^{2}}, \frac{1}{2} \cdot \frac{2 y}{x^{2}+y^{2}}\right\rangle=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle \Longrightarrow \nabla f(1,2)=\left\langle\frac{1}{1^{2}+2^{2}}, \frac{2}{1^{2}+2^{2}}\right\rangle=\left\langle\frac{1}{5}, \frac{2}{5}\right\rangle$
(b) What is the maximum rate of increase of f from point $P(1,2)$?
$\|\nabla f(1,2)\|=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=\sqrt{\frac{5}{25}}=\frac{1}{\sqrt{5}}$
(c) In what direction is f decreasing most rapidly from point $P(1,2)$?
$-\nabla f(1,2)=\left\langle-\frac{1}{5},-\frac{2}{5}\right\rangle$
EX 11.6.4: Let $h(x, y, z)=\tan (x+2 y+3 z)$.
(a) In what direction is h increasing most rapidly from point $P(-5,1,1)$?

$$
\begin{aligned}
& \nabla h=\left\langle h_{x}, h_{y}, h_{z}\right\rangle=\left\langle\sec ^{2}(x+2 y+3 z), 2 \sec ^{2}(x+2 y+3 z), 3 \sec ^{2}(x+2 y+3 z)\right\rangle \\
& \nabla h(-5,1,1)=\left\langle\sec ^{2}((-5)+2(1)+3(1)), 2 \sec ^{2}((-5)+2(1)+3(1)), 3 \sec ^{2}((-5)+2(1)+3(1))\right\rangle=\langle 1,2,3\rangle
\end{aligned}
$$

(b) What is the maximum rate of increase of h from point $P(-5,1,1)$?
$\|\nabla h(-5,1,1)\|=\|\langle 1,2,3\rangle\|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}$
(c) In what direction is h decreasing most rapidly from point $P(-5,1,1)$?
$-\nabla h(-5,1,1)=\langle-1,-2,-3\rangle$
EX 11.6.5: Find a unit vector that's normal to the hyperbola $\frac{x^{2}}{5}-\frac{y^{2}}{3}=1$ at point $Q(\sqrt{10}, \sqrt{3})$.
The key here is to realize that the desired normal unit vector is $\widehat{\mathbf{n}}=\nabla f(\sqrt{10}, \sqrt{3})$ or $\widehat{\mathbf{n}}=-\nabla f(\sqrt{10}, \sqrt{3})$
Let $f(x, y)=($ Left-Hand Side of Canonical Form of Hyperbola) $)=\frac{x^{2}}{5}-\frac{y^{2}}{3}$
Then, $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\left\langle\frac{2}{5} x,-\frac{2}{3} y\right\rangle \Longrightarrow \nabla f(\sqrt{10}, \sqrt{3})=\left\langle\frac{2}{5}(\sqrt{10}),-\frac{2}{3}(\sqrt{3})\right\rangle=\left\langle\frac{4}{\sqrt{10}},-\frac{2}{\sqrt{3}}\right\rangle$
Hence, $\mathbf{n}=\left\langle\frac{4}{\sqrt{10}},-\frac{2}{\sqrt{3}}\right\rangle$
Finally, normalize $\mathbf{n}: \quad \widehat{\mathbf{n}}=\frac{\mathbf{n}}{\|\mathbf{n}\|}=\frac{\left\langle\frac{4}{\sqrt{10}},-\frac{2}{\sqrt{3}}\right\rangle}{\sqrt{\left(\frac{4}{\sqrt{10}}\right)^{2}+\left(-\frac{2}{\sqrt{3}}\right)^{2}}}=\frac{\sqrt{30}}{\sqrt{88}}\left\langle\frac{4}{\sqrt{10}},-\frac{2}{\sqrt{3}}\right\rangle=\left\langle\left\langle\frac{2 \sqrt{3}}{\sqrt{22}},-\frac{\sqrt{10}}{\sqrt{22}}\right\rangle\right.$

