Let $g(x, y, z)$ be the LHS of the constraint: $g(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$
Compute the gradients of $f \& g$:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\langle 1,-2,1\rangle \quad \nabla g=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right\rangle=\langle 2 x, 4 y, 6 z\rangle
$$

Observe that $x \neq 0, y \neq 0, z \neq 0$, and $\lambda \neq 0 \quad$ (Do you see why??)
This observation allows us to safely divide by any of the variables, if necessary.
In the top three equations, solve for each variable in terms of λ :

$$
1=2 x \lambda \Longrightarrow x=\frac{1}{2 \lambda}, \quad-2=4 y \lambda \Longrightarrow y=-\frac{1}{2 \lambda}, \quad 1=6 z \lambda \Longrightarrow z=\frac{1}{6 \lambda}
$$

Plug each λ-expression for x, y, z into the constraint (bottom equation):

$$
\left(\frac{1}{2 \lambda}\right)^{2}+2\left(-\frac{1}{2 \lambda}\right)^{2}+3\left(\frac{1}{6 \lambda}\right)^{2}=6 \Longrightarrow \frac{1}{4} \cdot \frac{1}{\lambda^{2}}+\frac{1}{2} \cdot \frac{1}{\lambda^{2}}+\frac{1}{12} \cdot \frac{1}{\lambda^{2}}=6 \Longrightarrow \frac{5}{6} \cdot \frac{1}{\lambda^{2}}=6 \Longrightarrow \lambda^{2}=\frac{5}{36} \Longrightarrow \lambda= \pm \frac{\sqrt{5}}{6}
$$

Find the corresponding values of x, y, z :

$$
\begin{aligned}
& \lambda=-\frac{\sqrt{5}}{6} \Longrightarrow x=\frac{1}{2 \lambda}=\frac{1}{2}\left(-\frac{\sqrt{5}}{6}\right)=-\frac{3}{\sqrt{5}}, \quad y=-\frac{1}{2 \lambda}=-\frac{1}{2}\left(-\frac{\sqrt{5}}{6}\right)=\frac{3}{\sqrt{5}}, \quad z=\frac{1}{6 \lambda}=\frac{1}{6}\left(-\frac{\sqrt{5}}{6}\right)=-\frac{1}{\sqrt{5}} \\
& \lambda=\frac{\sqrt{5}}{6} \Longrightarrow x=\frac{1}{2 \lambda}=\frac{1}{2}\left(\frac{\sqrt{5}}{6}\right)=\frac{3}{\sqrt{5}}, \quad y=-\frac{1}{2 \lambda}=-\frac{1}{2}\left(\frac{\sqrt{5}}{6}\right)=-\frac{3}{\sqrt{5}}, \quad z=\frac{1}{6 \lambda}=\frac{1}{6}\left(\frac{\sqrt{5}}{6}\right)=\frac{1}{\sqrt{5}}
\end{aligned}
$$

Therefore, the CCP's of f are $\left(-\frac{3}{\sqrt{5}}, \frac{3}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right), \quad\left(\frac{3}{\sqrt{5}},-\frac{3}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

Finally, build a table computing f at each CCP:

(x, y, z)	$\left(-\frac{\mathbf{3}}{\sqrt{5}}, \frac{\mathbf{3}}{\sqrt{5}},-\frac{\mathbf{1}}{\sqrt{5}}\right)$	$\left(\frac{3}{\sqrt{5}},-\frac{3}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
$f(x, y, z)$	$-\frac{\mathbf{1 0}}{\sqrt{5}}$	$\frac{10}{\sqrt{5}}$
Result	Abs Min	

Let $g(x, y, z)$ be the LHS of the constraint: $g(x, y, z)=x+y+z$
Compute the gradients of $f \& g$:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\langle y z, x z, x y\rangle \quad \nabla g=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right\rangle=\langle 1,1,1\rangle
$$

Solve the nonlinear system: $\left\{\begin{aligned} \nabla f & =\lambda \nabla g \\ g(x, y, z) & =1\end{aligned} \Longrightarrow\left\{\begin{aligned} f_{x} & =\lambda g_{x} \\ f_{y} & = \\ f_{z} & =\lambda g_{y} \\ g(x, y, z) & =1\end{aligned} \Longrightarrow\left\{\begin{aligned} y z & =\lambda \\ x z & = \\ x y & = \\ x+y+z & =\end{aligned}\right.\right.\right.$
Now, $\left\{\begin{array}{c}y z \\ y \\ x z \\ x y \\ x y \\ x+y+z\end{array}=1 . \lambda y z=x z=x y \Longrightarrow\left(\begin{array}{c}y z=x z \\ \text { and } \\ x z=x y\end{array}\right) \Longrightarrow\left(\begin{array}{c}y z-x z=0 \\ \text { and } \\ x z-x y=0\end{array}\right) \Longrightarrow\left(\begin{array}{c}z(y-x)=0 \\ \text { and } \\ x(z-y)=0\end{array}\right)\right.$
$\Longrightarrow\left(\begin{array}{c}z=0 \text { or } y-x=0 \\ \text { and } \\ x=0 \text { or } z-y=0\end{array}\right) \Longrightarrow\left(\begin{array}{c}z=0 \text { or } y=x \\ \text { and } \\ x=0 \text { or } z=y\end{array}\right) \Longrightarrow\left(\begin{array}{c}z=0 \text { and } x=0 \\ \text { or } \\ z=0 \text { and } z=y \\ \text { or } \\ y=x \text { and } x=0 \\ \text { or } \\ y=x \text { and } z=y\end{array}\right)$

Apply each of these four cases to the constraint (bottom equation) and solve for x, y, z :
(CASE I) Suppose $z=0$ and $x=0$:
Then, $x+y+z=1 \Longrightarrow(0)+y+(0)=1 \Longrightarrow y=1 \Longrightarrow(0,1,0)$ is a CCP of f
(CASE II) Suppose $z=0$ and $z=y$:
Then, $y=0$ and $x+y+z=1 \Longrightarrow x+(0)+(0)=1 \Longrightarrow x=1 \Longrightarrow(1,0,0)$ is a CCP of f
(CASE III) Suppose $y=x$ and $x=0$:
Then, $y=0$ and $x+y+z=1 \Longrightarrow(0)+(0)+z=1 \Longrightarrow z=1 \Longrightarrow(0,0,1)$ is a CCP of f
(CASE IV) Suppose $y=x$ and $z=y$:
Then, $x=y=z$ and $x+y+z=1 \Longrightarrow x+x+x=1 \Longrightarrow 3 x=1 \Longrightarrow x=\frac{1}{3} \Longrightarrow y=\frac{1}{3}$ and $z=\frac{1}{3}$ $\Longrightarrow\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is a CCP of f
Therefore, the CCP's of f are $(1,0,0),(0,1,0)(0,0,1),\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
Finally, build a table computing f at each CCP:

(x, y, z)	$(1,0,0)$	$(0,1,0)$	$(0,0,1)$	$\left(\frac{\mathbf{1}}{\mathbf{3}}, \frac{\mathbf{1}}{\mathbf{3}}, \frac{\mathbf{1}}{\mathbf{3}}\right)$
$f(x, y, z)$	0	0	0	$\frac{\mathbf{1}}{\mathbf{2 7}}$
Result				Abs Max

First of all, reframe this problem as a constrained optimization problem:
Using one Lagrange Multiplier λ, maximize $f(x, y)=x y$ subject to constraint $x+y=60$, where $x \geq 0, y \geq 0$

Let $g(x, y)$ be the LHS of the constraint: $g(x, y)=x+y$
Compute the gradients of $f \& g$:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\langle y, x\rangle \quad \nabla g=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right\rangle=\langle 1,1\rangle
$$

Solve the nonlinear system: $\left\{\begin{aligned} \nabla f & =\lambda \nabla g \\ g(x, y) & =60\end{aligned} \Longrightarrow\left\{\begin{aligned} f_{x} & =\lambda g_{x} \\ f_{y} & =\lambda g_{y} \\ g(x, y) & =60\end{aligned} \Longrightarrow\left\{\begin{aligned} y & =\lambda \\ x & = \\ x+y & =\end{aligned}\right.\right.\right.$
Plug the top two equations into the constraint (bottom equation) and solve for λ :

$$
x+y=60 \Longrightarrow(\lambda)+(\lambda)=60 \Longrightarrow 2 \lambda=60 \Longrightarrow \lambda=30
$$

Find the corresponding values of x, y :

$$
x=\lambda=30 \text { and } y=\lambda=30 \Longrightarrow(30,30) \text { is the only CCP of } f
$$

Since there is only one CCP, pick another point on the constraint:
Remember that $x \geq 0, y \geq 0$ (see the "reframing problem as constrained optimization" above) Let $x=20$, then $(20)+y=60 \Longrightarrow y=40$

Therefore, $(20,40)$ is a point on the constraint

Finally, build a table computing f at each CCP:

(x, y)	$(\mathbf{3 0}, \mathbf{3 0})$	$(20,40)$
$f(x, y)$	$\mathbf{9 0 0}$	800
Result	Abs Max	

EX 11.8.6: Find the smallest sum of positive real numbers x, y, z such that their product is 64 .

First of all, reframe this problem as a constrained optimization problem:
Using one Lagrange Multiplier λ, minimize $f(x, y)=x+y+z$ s.t. constraint $x y z=64$, where $x \geq 0, y \geq 0, z \geq 0$
Let $g(x, y, z)$ be the LHS of the constraint: $g(x, y, z)=x y z$
Compute the gradients of $f \& g$:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\langle 1,1,1\rangle \quad \nabla g=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right\rangle=\langle y z, x z, x y\rangle
$$

Solve the nonlinear system: $\left\{\begin{aligned} \nabla f & =\lambda \nabla g \\ g(x, y, z) & =64\end{aligned} \Longrightarrow\left\{\begin{aligned} f_{x} & =\lambda g_{x} \\ f_{y} & =\lambda g_{y} \\ f_{z} & =\lambda g_{z} \\ g(x, y, z) & =64\end{aligned} \Longrightarrow\left\{\begin{aligned} 1 & =y z \lambda \\ 1 & =x z \lambda \\ 1 & = \\ x y z & =64\end{aligned}\right.\right.\right.$
Observe that $x \neq 0, y \neq 0, z \neq 0, \lambda \neq 0 \quad$ (Do you see why??)
This observation allows us to safely divide by any of the variables, if necessary.
Divide both sides of the top three equations by λ :

$$
\left\{\begin{array} { l }
{ 1 = y z \lambda } \\
{ 1 = x z \lambda } \\
{ 1 = x y \lambda }
\end{array} \Longrightarrow \left\{\begin{array}{l}
1 / \lambda=y z \\
1 / \lambda=x z \\
1 / \lambda=x y
\end{array}\right.\right.
$$

Now, since the LHS's are all equal, equate the RHS's to each other:

$$
y z=x z=x y
$$

Now, unpack this "chain of equalities" into a pair of equations \& then simplify:

$$
\begin{aligned}
& y z=x z=x y \Longrightarrow\left(\begin{array}{c}
y z=x z \\
\text { and } \\
x z=x y
\end{array}\right) \Longrightarrow\left(\begin{array}{c}
y z-x z=0 \\
\text { and } \\
x z-x y=0
\end{array}\right) \Longrightarrow\left(\begin{array}{c}
(y-x) z=0 \\
\text { and } \\
x(z-y)=0
\end{array}\right) \Longrightarrow\left(\begin{array}{c}
y=x \text { or } z=0 \\
\text { and } \\
z=0 \text { or } z=y
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{c}
y=x \\
\text { and } \\
z=y
\end{array}\right) \Longrightarrow x=y=z
\end{aligned}
$$

Find the corresponding values of x, y, z by using the constraint (bottom equation):

$$
x y z=64 \Longrightarrow x(x)(x)=64 \Longrightarrow x^{3}=64 \Longrightarrow x=4 \Longrightarrow y=4 \text { and } z=4
$$

Therefore, the only CCP of f is $(4,4,4)$.

Since there is only one CCP, pick another point on the constraint:
Remember that $x>0, y>0, z>0$ (see the "reframing as constrained opt." \& observation above)
Let $x=1$ and $y=1$, then $(1)(1) z=64 \Longrightarrow z=64$
Therefore, $(1,1,64)$ is a point on the constraint

Finally, build a table computing f at each CCP:

(x, y, z)	$(\mathbf{4}, \mathbf{4}, \mathbf{4})$	$(1,1,64)$
$f(x, y, z)$	$\mathbf{1 2}$	66
Result	Abs Min	

[^0]
[^0]: © 2013 Josh Engwer - Revised October 8, 2014

