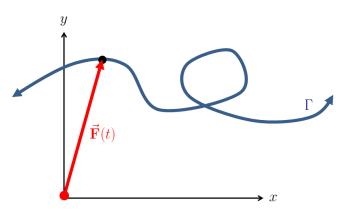
Vector Functions: Algebra & Limits Calculus III

Josh Engwer

TTU

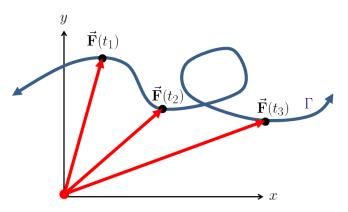
12 September 2014

A **2D vector function** is a 2D parametric curve "wrapped" in a vector.



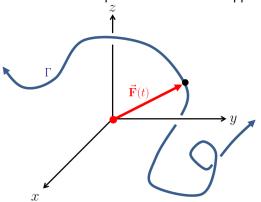
- $\vec{\mathbf{F}}(t) := \langle f_1(t), f_2(t) \rangle = f_1(t)\hat{\mathbf{i}} + f_2(t)\hat{\mathbf{j}}$ $\mathsf{Dom}(\vec{\mathbf{F}}) := \mathsf{Dom}(f_1) \cap \mathsf{Dom}(f_2)$

A **2D vector function** is a 2D parametric curve "wrapped" in a vector.



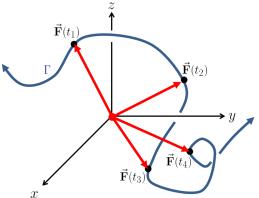
- Here, $t_1 < t_2 < t_3$.
- $\vec{\mathbf{F}}(t)$ traces out a **curve** (**trajectory**) on the *xy*-plane, labeled Γ ("Gamma")

A 3D vector function is a 3D parametric curve "wrapped" in a vector.



- $\vec{\mathbf{F}}(t) := \langle f_1(t), f_2(t), f_3(t) \rangle = f_1(t)\hat{\mathbf{i}} + f_2(t)\hat{\mathbf{j}} + f_3(t)\hat{\mathbf{k}}$
- $\mathsf{Dom}(\vec{\mathbf{F}}) := \mathsf{Dom}(f_1) \cap \mathsf{Dom}(f_2) \cap \mathsf{Dom}(f_3)$

A 3D vector function is a 3D parametric curve "wrapped" in a vector.



- Here, $t_1 < t_2 < t_3 < t_4$.
- $\vec{\mathbf{F}}(t)$ traces out a **curve** (**trajectory**) in space, labeled Γ ("Gamma")

Vector Functions & Parametric Curves

Parametric curves can be represented very compactly with vector functions:

In
$$\mathbb{R}^2$$
:
$$\begin{cases} x = f(t) \\ y = g(t) \iff \vec{\mathbf{R}}(t) = \langle f(t), g(t) \rangle, \ t \in I \\ t \in I \end{cases}$$

<u>REMARK:</u> If $t \in I'$ is omitted, then $t \in Dom(f) \cap Dom(g)$

In
$$\mathbb{R}^3$$
:
$$\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \end{cases} \iff \vec{\mathbf{R}}(t) = \langle f(t), g(t), h(t) \rangle, \ t \in I$$

 $\underline{\mathsf{REMARK:}} \ \, \mathsf{If} \, \, {}^{'}\!\!t \in \mathit{I'} \, \, \mathsf{is} \, \, \mathsf{omitted}, \, \mathsf{then} \, \, t \in \, \, \mathsf{Dom}(f) \, \cap \, \, \mathsf{Dom}(g) \, \cap \, \, \mathsf{Dom}(h)$

<u>NOTATION:</u> $\iff \equiv$ "is (logically) equivalent to" \equiv "if and only if"

Vector Functions & Lines

In particular, lines can be represented very compactly with vector functions:

$$\operatorname{In} \mathbb{R}^{2} \colon \ \ell : \begin{cases}
 x = x_{0} + v_{1}t \\
 y = y_{0} + v_{2}t & \iff \vec{\mathbf{L}}(t) = \langle x_{0} + v_{1}t, y_{0} + v_{2}t \rangle \\
 t \in \mathbb{R}
\end{cases}$$

$$\operatorname{In} \mathbb{R}^{3} \colon \ \ell : \begin{cases}
 x = x_{0} + v_{1}t \\
 y = y_{0} + v_{2}t \\
 z = z_{0} + v_{3}t \\
 t \in \mathbb{R}
\end{cases}$$

$$\stackrel{\leftarrow}{\mathbf{L}}(t) = \langle x_{0} + v_{1}t, y_{0} + v_{2}t, z_{0} + v_{3}t \rangle$$

 $\underline{\mathsf{NOTATION}}$: \iff \equiv "is (logically) equivalent to" \equiv "if and only if"

Vector Functions & Conic Sections

CONIC SECTION	RECT. FORM	PARAMETRIC FORM			
Parabola	$y = Ax^2 + C$	$ec{\mathbf{R}}(t) = \left\langle t, At^2 + C \right\rangle, \ t \in \mathbb{R}$			
Parabola	$x = By^2 + D$	$\vec{\mathbf{R}}(t) = \left\langle Bt^2 + D, t \right\rangle, \ t \in \mathbb{R}$			
Circle	$x^2 + y^2 = r^2$	$\vec{\mathbf{R}}(t) = \langle r\cos t, r\sin t \rangle, \ t \in [0, 2\pi]$			
Ellipse	$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$	$\vec{\mathbf{R}}(t) = \langle A\cos t, B\sin t \rangle , \ t \in [0, 2\pi]$			
Hyperbola	$\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$	$\vec{\mathbf{R}}(t) = \langle A \sec t, B \tan t \rangle$, Left: $t \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$			
Пурегоога	$\frac{A^2}{A^2} - \frac{B^2}{B^2} - 1$	$Right:\ t \in \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$			
Hyperbola	$\frac{y^2}{R^2} - \frac{x^2}{A^2} = 1$	$\vec{\mathbf{R}}(t) = \langle A \tan t, B \sec t \rangle$, Btm: $t \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$			
Турствоїа	$\overline{B^2}$ $\overline{A^2}$ $\overline{A^2}$	Top: $t \in \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$			

<u>REMARK:</u> The **restricted** *t*-values ensure the curve is traced **only once**. REMARK: Parameterizations are not unique (but, the above are convention.)

Vector Functions (vs Scalar Functions)

FUNCTION TYPE	PROTOTYPE	MEANING		
Scalar Function	y = f(x)	f maps scalar $ o$ scalar		
Scalar Function	x = g(y)	g maps scalar $ ightarrow$ scalar		
2D Vector Function	$\mathbf{F}(t) = \langle f_1(t), f_2(t) \rangle$	$\textbf{F} \text{ maps scalar} \rightarrow \textbf{2D vector}$		
3D Vector Function	$\mathbf{H}(t) = \langle h_1(t), h_2(t), h_3(t) \rangle$	$ extbf{H}$ maps scalar $ o$ 3D vector		

Vector Functions (vs Scalar Functions)

FUNCTION TYPE	PROTOTYPE	MAPPING	
Scalar Function	y = f(x)	$f: \mathbb{R} \to \mathbb{R}$	
Scalar Function	x = g(y)	$g:\mathbb{R} o\mathbb{R}$	
2D Vector Function	$\mathbf{F}(t) = \langle f_1(t), f_2(t) \rangle$	$\mathbf{F}:\mathbb{R} o\mathbb{R}^2$	
3D Vector Function	$\mathbf{H}(t) = \langle h_1(t), h_2(t), h_3(t) \rangle$	$\mathbf{H}: \mathbb{R} \to \mathbb{R}^3$	

Vector Functions (Algebra)

Let $\mathbf{F}(t)$, $\mathbf{G}(t)$, $\mathbf{H}(t)$ be vector functions & f, h be scalar functions. Then:

OPERATION	FORMULA	REMARKS		
Addition/Subtraction	$\mathbf{H}(t) = \mathbf{F}(t) \pm \mathbf{G}(t)$	$Dom(\mathbf{H}) = Dom(\mathbf{F}) \cap Dom(\mathbf{G})$		
Scalar Multiplication	$\mathbf{H}(t) = f(t)\mathbf{F}(t)$	$Dom(\mathbf{H}) = Dom(f) \cap Dom(\mathbf{F})$		
Dot Product	$h(t) = \mathbf{F}(t) \cdot \mathbf{G}(t)$	$Dom(h) = Dom(\mathbf{F}) \cap Dom(\mathbf{G})$		
Cross Product*	$\mathbf{H}(t) = \mathbf{F}(t) \times \mathbf{G}(t)$	$Dom(\mathbf{H}) = Dom(\mathbf{F}) \cap Dom(\mathbf{G})$		

^{*} Cross products are defined only for **3D** vector functions!

i.e., operations on vector functions behave exactly like operations on vectors.

Vector Functions (Limits)

Definition

Let vector function $\mathbf{F}(t) := \langle f_1(t), f_2(t), f_3(t) \rangle$.

Moreover, suppose the scalar limits $\lim_{t\to t_0} f_1(t)$, $\lim_{t\to t_0} f_2(t)$, $\lim_{t\to t_0} f_3(t)$ are all **finite**.

Then:

$$\lim_{t \to t_0} \mathbf{F}(t) := \left\langle \lim_{t \to t_0} f_1(t), \lim_{t \to t_0} f_2(t), \lim_{t \to t_0} f_3(t) \right\rangle$$

Otherwise, if any of the above three scalar limits are

 $-\infty, +\infty$, or DNE*, then $\lim_{t\to t_0} \mathbf{F}(t) = \mathsf{DNE}$

<u>REMARK:</u> The limit of a vector function, if it exists, is a **vector**.

* DNE = Does Not Exist

Vector Functions (Limits)

Let $\mathbf{F}(t)$, $\mathbf{G}(t)$ be vector functions & f be a scalar function. Then:

LIMIT RULE	FORMULA			
Sum/Diff Rule	$\left \lim_{t \to t_0} \left[\mathbf{F}(t) \pm \mathbf{G}(t) \right] \right =$	$\left[\lim_{t\to t_0}\mathbf{F}(t)\right]$	±	$\left[\lim_{t\to t_0}\mathbf{G}(t)\right]$
Scalar Multiple Rule	$\lim_{t \to t_0} \left[f(t) \mathbf{F}(t) \right] =$	$\left[\lim_{t\to t_0}f(t)\right]$	$\left[\lim_{t\to t_0}\mathbf{F}(t)\right]$	
Dot Product Rule	$\lim_{t \to t_0} \left[\mathbf{F}(t) \cdot \mathbf{G}(t) \right] =$	$\left[\lim_{t\to t_0}\mathbf{F}(t)\right]$. [$\lim_{t \to t_0} \mathbf{G}(t)$
Cross Product Rule*	$\lim_{t\to t_0} \left[\mathbf{F}(t) \times \mathbf{G}(t) \right] =$	$\left[\lim_{t\to t_0}\mathbf{F}(t)\right]$	×	$\left[\lim_{t\to t_0}\mathbf{G}(t)\right]$

^{*} Cross products are defined only for **3D** vector functions!

Vector Functions (Continuity)

Definition

Let $\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$. Then:

 $\mathbf{F}(t)$ is **continuous at a point** t_0 , denoted $\mathbf{F} \in C(\{t_0\})$, if

$$t_0 \in \mathsf{Dom}(\mathbf{F}) \; \mathsf{AND} \; \lim_{t \to t_0} \mathbf{F}(t) = \mathbf{F}(t_0)$$

 $\mathbf{F}(t)$ is **continous at a set** $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C(S)$, if

its componenents $f_1, f_2, f_3 \in C(S)$

To determine the set of continuity for vector function $\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$:

- Find the set of continuity for each component of $\mathbf{F}(t)$: $f_1 \in C(S_1), f_2 \in C(S_2), f_3 \in C(S_3)$
- Take the **intersection** every component's set of continuity: $\mathbf{F} \in C(S_1 \cap S_2 \cap S_3)$

Fin

Fin.