Vector Functions: Calculus & Kinematics Calculus III

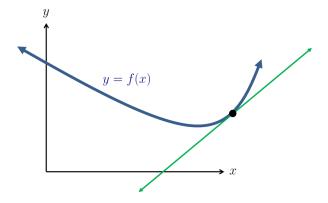
Josh Engwer

TTU

15 September 2014

Josh Engwer (TTU)

Scalar Functions (1st Derivative Definition)



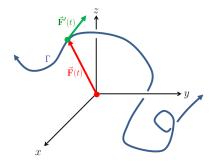
Recall from Calculus I: $f'(x) := \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

Geometrically, f'(x) represents the slope of the tangent line to curve y = f(x)

Given vector function $\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$,

$$\begin{aligned} \mathbf{F}'(t) &:= \lim_{\Delta t \to 0} \frac{\mathbf{F}(t + \Delta t) - \mathbf{F}(t)}{\Delta t} \\ &= \lim_{\Delta t \to 0} \left\langle \frac{f_1(t + \Delta t) - f_1(t)}{\Delta t}, \frac{f_2(t + \Delta t) - f_2(t)}{\Delta t}, \frac{f_3(t + \Delta t) - f_3(t)}{\Delta t} \right\rangle \\ &= \left\langle \lim_{\Delta t \to 0} \frac{f_1(t + \Delta t) - f_1(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{f_2(t + \Delta t) - f_2(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{f_3(t + \Delta t) - f_3(t)}{\Delta t} \right\rangle \\ &:= \left\langle f_1'(t), f_2'(t), f_3'(t) \right\rangle \end{aligned}$$

Vector Functions (1st Derivative Definition)



Definition

Let vector function $\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$ trace curve Γ . Then:

 $\mathbf{F}'(t) := \langle f_1'(t), f_2'(t), f_3'(t) \rangle$

Geometrically, $\mathbf{F}'(t)$ represents the **tangent vector** to the curve Γ .

Josh Engwer (TTU)

Vector Functions: Calculus & Kinematics

Let $\mathbf{F}(t)$, $\mathbf{G}(t)$ be vector functions & *h* be a scalar function. Then:

DERIVATIVE RULE	FORMULA		
Sum/Diff Rule	$\frac{d}{dt} \Big[\mathbf{F}(t) \pm \mathbf{G}(t) \Big] = \mathbf{F}'(t) \pm \mathbf{G}'(t)$		
Scalar Multiple Rule	$\frac{d}{dt} \left[h(t) \mathbf{F}(t) \right] = h'(t) \mathbf{F}(t) + h(t) \mathbf{F}'(t)$		
Dot Product Rule	$\frac{d}{dt} \left[\mathbf{F}(t) \cdot \mathbf{G}(t) \right] = \mathbf{F}'(t) \cdot \mathbf{G}(t) + \mathbf{F}(t) \cdot \mathbf{G}'(t)$		
Cross Product Rule*	$\frac{d}{dt} \left[\mathbf{F}(t) \times \mathbf{G}(t) \right] = \mathbf{F}'(t) \times \mathbf{G}(t) + \mathbf{F}(t) \times \mathbf{G}'(t)$		
Chain Rule	$\frac{d}{dt} \left[\mathbf{F} \left[h(t) \right] \right] = \mathbf{F}' \left[h(t) \right] h'(t)$		

* Cross products are defined only for **3D** vector functions!

ORDER	DEFINITION	LEIBNIZ NOTATION	
1 st Derivative	$\mathbf{F}'(t) := \langle f_1'(t), f_2'(t), f_3'(t) \rangle$	$\frac{d\mathbf{F}}{dt}$	
2 nd Derivative	$\mathbf{F}''(t) := \langle f_1''(t), f_2''(t), f_3''(t) \rangle$	$\frac{d^2\mathbf{F}}{dt^2}$	
3 rd Derivative	$\mathbf{F}'''(t) := \langle f_1'''(t), f_2'''(t), f_3'''(t) \rangle$	$\frac{d^3 \mathbf{F}}{dt^3}$	
4 th Derivative	$\mathbf{F}^{(4)}(t) := \left\langle f_1^{(4)}(t), f_2^{(4)}(t), f_3^{(4)}(t) \right\rangle$	$rac{d^4 \mathbf{F}}{dt^4}$	
:	÷	:	
n th Derivative	$\mathbf{F}^{(n)}(t) := \left\langle f_1^{(n)}(t), f_2^{(n)}(t), f_3^{(n)}(t) \right\rangle$	$\frac{d^n \mathbf{F}}{dt^n}$	

Notation for Continuous Derivatives (Calculus I)

Recall the notation for a **continuous function** f on a set S: $f \in C(S)$

Definition

Given function f(x) and set $S \subseteq \mathbb{R}$. Then:

$$f \in C^{1}(S) \iff f, f' \in C(S)$$
$$f \in C^{2}(S) \iff f, f', f'' \in C(S)$$
$$f \in C^{3}(S) \iff f, f', f'', f''' \in C(S)$$
$$f \in C^{4}(S) \iff f, f', f'', f''', f^{(\prime\prime)} \in C(S)$$
$$f \in C^{k}(S) \iff f, f', f'', \cdots, f^{(k-1)}, f^{(k)} \in C(S)$$

Definition

Let vector function $\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$. Then: $\mathbf{F}(t)$ is **differentiable** on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^1(S)$, if

components $f_1, f_2, f_3 \in C^1(S)$

 $\mathbf{F}(t)$ is twice differentiable on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^2(S)$, if

components $f_1, f_2, f_3 \in C^2(S)$

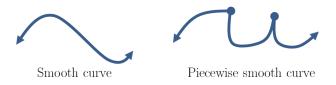
 $\mathbf{F}(t)$ is three times differentiable on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^3(S)$, if

components $f_1, f_2, f_3 \in C^3(S)$

 $\mathbf{F}(t)$ is *k*-times differentiable on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^k(S)$, if

components $f_1, f_2, f_3 \in C^k(S)$

Vector Functions (Smoothness)



Definition

Let vector function $\mathbf{F}(t)$ trace curve Γ . Then: $\mathbf{F}(t)$ (curve Γ) is **smooth on interval** (a,b) if

$$\begin{bmatrix} \mathbf{F} \in C^1(a,b) \text{ AND } \mathbf{F}'(t) \neq \vec{\mathbf{0}} \quad \forall t \in (a,b) \end{bmatrix}$$

 $\mathbf{F}(t)$ (curve Γ) is **piecewise smooth on** (a, b) if

 $\mathbf{F}(t)$ is smooth on (a, b) except at a finite # of points.

REMARK: A smooth curve has no corners or cusps. (see top-right curve)

Josh Engwer (TTU)

Definition

Let vector function $\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$. Then:

$$\int_{a}^{b} \mathbf{F}(t) dt := \left\langle \int_{a}^{b} f_{1}(t) dt, \int_{a}^{b} f_{2}(t) dt, \int_{a}^{b} f_{3}(t) dt \right\rangle$$
$$\int \mathbf{F}(t) dt := \left\langle \int f_{1}(t) dt, \int f_{2}(t) dt, \int f_{3}(t) dt \right\rangle + \vec{\mathbf{C}}$$

where $\vec{\mathbf{C}} := \langle C_1, C_2, C_3 \rangle$ is the constant vector of integration.

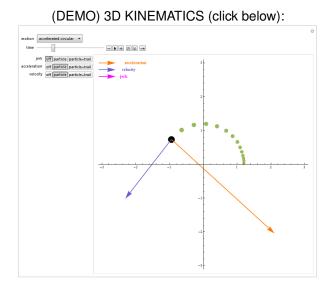
Definition

SETUP: Given a particle in 3D with position vector $\mathbf{R}(t) = \langle R_1(t), R_2(t), R_3(t) \rangle$

Trajectory		$\Gamma :=$ Graph of position vector $\mathbf{R}(t)$			
Velocity	Speed	Direction	$\mathbf{V}(t) := \mathbf{R}'(t)$	$ \mathbf{V}(t) $	$\frac{\mathbf{V}(t)}{ \mathbf{V}(t) }$
Acceleration		$\mathbf{A}(t) := \mathbf{V}'(t) = \mathbf{R}''(t)$			

The particle is stationary $\iff \mathbf{V}(t) = \vec{\mathbf{0}}$

Vector Functions (3D Kinematics)



Fin.