Vector Functions: Calculus \& Kinematics

Calculus III

Josh Engwer

TTU

15 September 2014

Scalar Functions (1st Derivative Definition)

Recall from Calculus I: $\quad f^{\prime}(x):=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
Geometrically, $f^{\prime}(x)$ represents the slope of the tangent line to curve $y=f(x)$

Vector Functions ($1^{s t}$ Derivative Derivation)

Given vector function $\mathbf{F}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle$,

$$
\begin{aligned}
\mathbf{F}^{\prime}(t) & :=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{F}(t+\Delta t)-\mathbf{F}(t)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0}\left\langle\frac{f_{1}(t+\Delta t)-f_{1}(t)}{\Delta t}, \frac{f_{2}(t+\Delta t)-f_{2}(t)}{\Delta t}, \frac{f_{3}(t+\Delta t)-f_{3}(t)}{\Delta t}\right\rangle \\
& =\left\langle\lim _{\Delta t \rightarrow 0} \frac{f_{1}(t+\Delta t)-f_{1}(t)}{\Delta t}, \lim _{\Delta t \rightarrow 0} \frac{f_{2}(t+\Delta t)-f_{2}(t)}{\Delta t}, \lim _{\Delta t \rightarrow 0} \frac{f_{3}(t+\Delta t)-f_{3}(t)}{\Delta t}\right\rangle \\
& :=\left\langle f_{1}^{\prime}(t), f_{2}^{\prime}(t), f_{3}^{\prime}(t)\right\rangle
\end{aligned}
$$

Vector Functions (1 $1^{s t}$ Derivative Definition)

Definition

Let vector function $\mathbf{F}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle$ trace curve Γ. Then:

$$
\mathbf{F}^{\prime}(t):=\left\langle f_{1}^{\prime}(t), f_{2}^{\prime}(t), f_{3}^{\prime}(t)\right\rangle
$$

Geometrically, $\mathbf{F}^{\prime}(t)$ represents the tangent vector to the curve Γ.

Vector Functions (Derivative Rules)

Let $\mathbf{F}(t), \mathbf{G}(t)$ be vector functions \& h be a scalar function. Then:

DERIVATIVE RULE	FORMULA
Sum/Diff Rule	$\frac{d}{d t}[\mathbf{F}(t) \pm \mathbf{G}(t)]=\mathbf{F}^{\prime}(t) \pm \mathbf{G}^{\prime}(t)$
Scalar Multiple Rule	$\frac{d}{d t}[h(t) \mathbf{F}(t)]=h^{\prime}(t) \mathbf{F}(t)+h(t) \mathbf{F}^{\prime}(t)$
Dot Product Rule	$\frac{d}{d t}[\mathbf{F}(t) \cdot \mathbf{G}(t)]=\mathbf{F}^{\prime}(t) \cdot \mathbf{G}(t)+\mathbf{F}(t) \cdot \mathbf{G}^{\prime}(t)$
Cross Product Rule	$\frac{d}{d t}[\mathbf{F}(t) \times \mathbf{G}(t)]=\mathbf{F}^{\prime}(t) \times \mathbf{G}(t)+\mathbf{F}(t) \times \mathbf{G}^{\prime}(t)$
Chain Rule	$\frac{d}{d t}[\mathbf{F}[h(t)]]=\mathbf{F}^{\prime}[h(t)] h^{\prime}(t)$

* Cross products are defined only for 3D vector functions!

Vector Functions (Higher-Order Derivatives)

ORDER	DEFINITION	LEIBNIZ NOTATION
$1^{s t}$ Derivative	$\mathbf{F}^{\prime}(t):=\left\langle f_{1}^{\prime}(t), f_{2}^{\prime}(t), f_{3}^{\prime}(t)\right\rangle$	$\frac{d \mathbf{F}}{d t}$
$2^{n d}$ Derivative	$\mathbf{F}^{\prime \prime}(t):=\left\langle f_{1}^{\prime \prime}(t), f_{2}^{\prime \prime}(t), f_{3}^{\prime \prime}(t)\right\rangle$	$\frac{d^{2} \mathbf{F}}{d t^{2}}$
$3^{r d}$ Derivative	$\mathbf{F}^{\prime \prime \prime}(t):=\left\langle f_{1}^{\prime \prime \prime}(t), f_{2}^{\prime \prime \prime}(t), f_{3}^{\prime \prime \prime}(t)\right\rangle$	$\frac{d^{3} \mathbf{F}}{d t^{3}}$
$4^{\text {th }}$ Derivative	$\mathbf{F}^{(4)}(t):=\left\langle f_{1}^{(4)}(t), f_{2}^{(4)}(t), f_{3}^{(4)}(t)\right\rangle$	$\frac{d^{\mathbf{4}} \mathbf{F}}{d t^{4}}$
\vdots	\vdots	\vdots
$n^{\text {th }}$ Derivative	$\mathbf{F}^{(n)}(t):=\left\langle f_{1}^{(n)}(t), f_{2}^{(n)}(t), f_{3}^{(n)}(t)\right\rangle$	$\frac{d^{n} \mathbf{F}}{d t^{n}}$

Notation for Continuous Derivatives (Calculus I)

Recall the notation for a continuous function f on a set S : $f \in C(S)$

Definition

Given function $f(x)$ and set $S \subseteq \mathbb{R}$. Then:

$$
\begin{gathered}
f \in C^{1}(S) \Longleftrightarrow f, f^{\prime} \in C(S) \\
f \in C^{2}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime} \in C(S) \\
f \in C^{3}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime} \in C(S) \\
f \in C^{4}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, f^{(4)} \in C(S) \\
f \in C^{k}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime}, \cdots, f^{(k-1)}, f^{(k)} \in C(S)
\end{gathered}
$$

Vector Functions (Differentiability)

Definition

Let vector function $\mathbf{F}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle$. Then:
$\mathbf{F}(t)$ is differentiable on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^{1}(S)$, if
components $f_{1}, f_{2}, f_{3} \in C^{1}(S)$
$\mathbf{F}(t)$ is twice differentiable on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^{2}(S)$, if components $f_{1}, f_{2}, f_{3} \in C^{2}(S)$
$\mathbf{F}(t)$ is three times differentiable on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^{3}(S)$, if components $f_{1}, f_{2}, f_{3} \in C^{3}(S)$
$\mathbf{F}(t)$ is k-times differentiable on a set $S \subseteq \mathbb{R}$, denoted $\mathbf{F} \in C^{k}(S)$, if components $f_{1}, f_{2}, f_{3} \in C^{k}(S)$

Vector Functions (Smoothness)

Smooth curve

Piecewise smooth curve

Definition

Let vector function $\mathbf{F}(t)$ trace curve Γ. Then: $\mathbf{F}(t)$ (curve Γ) is smooth on interval (a, b) if

$$
\left[\mathbf{F} \in C^{1}(a, b) \text { AND } \quad \mathbf{F}^{\prime}(t) \neq \overrightarrow{\mathbf{0}} \quad \forall t \in(a, b)\right]
$$

$\mathbf{F}(t)$ (curve Γ) is piecewise smooth on (a, b) if
$\mathbf{F}(t)$ is smooth on (a, b) except at a finite \# of points.
REMARK: A smooth curve has no corners or cusps. (see top-right curve)

Vector Functions (Integration)

Definition

Let vector function $\mathbf{F}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle$. Then:

$$
\begin{aligned}
\int_{a}^{b} \mathbf{F}(t) d t & :=\left\langle\int_{a}^{b} f_{1}(t) d t, \int_{a}^{b} f_{2}(t) d t, \int_{a}^{b} f_{3}(t) d t\right\rangle \\
\int \mathbf{F}(t) d t & :=\left\langle\int f_{1}(t) d t, \int f_{2}(t) d t, \int f_{3}(t) d t\right\rangle+\overrightarrow{\mathbf{C}}
\end{aligned}
$$

where $\overrightarrow{\mathbf{C}}:=\left\langle C_{1}, C_{2}, C_{3}\right\rangle$ is the constant vector of integration.

Vector Functions (3D Kinematics)

Definition

SETUP: Given a particle in 3D with position vector $\mathbf{R}(t)=\left\langle R_{1}(t), R_{2}(t), R_{3}(t)\right\rangle$

Trajectory			$\Gamma:=$ Graph of position vector $\mathbf{R}(t)$				
Velocity	Speed	Direction	$\mathbf{V}(t):=\mathbf{R}^{\prime}(t)$	$\\|\mathbf{V}(t)\\|$	$\frac{\mathbf{V}(t)}{\|\mathbf{V}(t)\|}$		
Acceleration			$\mathbf{A}(t):=\mathbf{V}^{\prime}(t)=\mathbf{R}^{\prime \prime}(t)$				

The particle is stationary $\Longleftrightarrow \mathbf{V}(t)=\overrightarrow{\mathbf{0}}$

Vector Functions (3D Kinematics)

(DEMO) 3D KINEMATICS (click below):

Fin.

