Functions of Several Variables: Partial Derivatives

Calculus III

Josh Engwer

TTU

24 September 2013

PART I: PARTIAL DERIVATIVES

$1^{s t}$-Order Partial Derivatives of $f(x, y)$

Definition

Given a function of two variables $f(x, y)$:
(Partial Derivative of f w.r.t. $x) \quad \frac{\partial f}{\partial x}:=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}$
(Partial Derivative of f w.r.t. $y) \quad \frac{\partial f}{\partial y}:=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}$
w.r.t \equiv "with respect to"

NOTATION:

"partial f partial x "	$\frac{\partial f}{\partial x}$	$\frac{\partial}{\partial x}[f(x, y)]$	f_{x}
"partial f partial y "	$\frac{\partial f}{\partial y}$	$\frac{\partial}{\partial y}[f(x, y)]$	f_{y}

$1^{s t}$-Order Partial Derivatives of $f(x, y)$

WEX 11-3-1: Let $f(x, y)=x y$. Compute $\frac{\partial f}{\partial x}$ using the definition.
$\frac{\partial f}{\partial x}:=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x) y-x y}{\Delta x}$
$=\lim _{\Delta x \rightarrow 0} \frac{x y+y \Delta x-x y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{y \Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0} y=y$

WEX 11-3-2: Let $f(x, y)=x y$. Compute $\frac{\partial f}{\partial y}$ using the definition.
$\frac{\partial f}{\partial y}:=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{x(y+\Delta y)-x y}{\Delta y}$
$=\lim _{\Delta y \rightarrow 0} \frac{x y+x \Delta y-x y}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{x \Delta y}{\Delta y}=\lim _{\Delta y \rightarrow 0} x=x$

$1^{s t}$-Order Partial Derivatives of Multivariable Functions

Just as in Calculus I, using the definition of a partial derivative is, in general, tedious at best and untenable at worst!

Fortunately, there's an easier procedure:
Use the ordinary derivative rules from Calculus I, but treat the other independent variable(s) as constants.

Review of Ordinary Derivative Rules from Calculus I

DERIVATIVE RULE FORMULA

REMARKS

Constant Rule
Power Rule
Constant Multiple Rule
Sum/Difference Rule
Product Rule
Quotient Rule

Chain Rule (usual form)

$$
\begin{array}{l|c}
\frac{d}{d x}[k]=0 & k \in \mathbb{R} \\
\frac{d}{d x}\left[x^{k}\right]=k x^{k-1} & k \in \mathbb{R} \\
\frac{d}{d x}[k f(x)]=k \frac{d f}{d x} & k \in \mathbb{R} \\
\frac{d}{d x}[f(x) \pm g(x)]=\frac{d f}{d x} \pm \frac{d g}{d x} & \\
\frac{d}{d x}[f(x) g(x)]=g(x) \frac{d f}{d x}+f(x) \frac{d g}{d x} & \\
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d f}{d x}-f(x) \frac{d g}{d x}}{[g(x)]^{2}} & g(x) \neq 0 \\
\frac{d}{d x}[f[g(x)]]=f^{\prime}[g(x)] g^{\prime}(x) & f \circ g \equiv f[g(x)] \\
\hline
\end{array}
$$

QUOTIENT RULE: "Lo D-Hi Minus Hi D-Lo All Over Lo-Squared"

Review of Ordinary Derivative Rules from Calculus I

- $\frac{d}{d x}[\sin x]=\cos x$
- $\frac{d}{d x}[\tan x]=\sec ^{2} x$
- $\frac{d}{d x}[\sec x]=\sec x \tan x$
- $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
- $\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$
$(a>0)$
- $\frac{d}{d x}[\arcsin x]=\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{d}{d x}[\arctan x]=\frac{1}{1+x^{2}}$
- $\frac{d}{d x}[\operatorname{arcsec} x]=\frac{1}{|x| \sqrt{x^{2}-1}}$

$$
\begin{aligned}
& \frac{d}{d x}[\cos x]=-\sin x \\
& \frac{d}{d x}[\cot x]=-\csc ^{2} x \\
& \frac{d}{d x}[\csc x]=-\csc x \cot x \\
& \frac{d}{d x}[\ln x]=\frac{1}{x} \\
& \frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a)} \cdot \frac{1}{x} \\
& (a>0 \text { and } a \neq 1) \\
& \frac{d}{d x}[\arccos x]=-\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}[\operatorname{arccot} x]=-\frac{1}{1+x^{2}} \\
& \frac{d}{d x}[\operatorname{arccsc} x]=-\frac{1}{|x| \sqrt{x^{2}-1}}
\end{aligned}
$$

$1^{s t}$-Order Partial Derivatives of $f(x, y)$

WEX 11-3-3: Let $f(x, y)=x y$. Compute $\frac{\partial f}{\partial x}$.

$$
\begin{array}{rlr}
\frac{\partial f}{\partial x} & =\frac{\partial}{\partial x}[x y] & \text { (Going forward, treat } y \text { as a constant) } \\
& =y \frac{\partial}{\partial x}[x] & (\text { Constant Multiple Rule) } \\
& =y(1) & (\text { Power Rule }) \\
& =y &
\end{array}
$$

WEX 11-3-4: Let $f(x, y)=x y$. Compute $\frac{\partial f}{\partial y}$.
$\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}[x y]=($ Now treat x as a constant $)=x \frac{\partial}{\partial y}[y]=x(1)=x$

$1^{s t}$-Order Partials of $f(x, y)$ (Interpretation)

Recall the interpretation of the $1^{s t}$-order ordinary derivative of $f(x)$:
$\frac{d f}{d x}$ measures the (instantaneous) rate of change of f as x changes.

Now, here's the interpretation of the $1^{s t}$-Order Partials of $f(x, y)$:
$\frac{\partial f}{\partial x}$ measures the rate of change of f as x changes, holding y constant.
$\frac{\partial f}{\partial y}$ measures the rate of change of f as y changes, holding x constant.
WEX 11-3-5: In physics, Ohm's Law is $E=I R$, where $E \equiv$ Voltage, $I \equiv$ Current, $R \equiv$ Resistance.
$\frac{\partial E}{\partial I}$ measures the rate of change of Voltage as Current changes, holding Resistance constant.
$\frac{\partial E}{\partial R}$ measures the rate of change of Voltage as Resistance changes, holding
Current constant.

$1^{s t}$-Order Partials of $f(x, y)$ (Geometric Interpretation)

Geometrically:

- $\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}$ is the slope of the tangent line to the intersection of surface f with plane $y=y_{0}$.
- $\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$ is the slope of the tangent line to the intersection of surface f with plane $x=x_{0}$.

$1^{s t}$-Order Partial Derivatives of $f(x, y, z)$

Definition

Given a function of three variables $f(x, y, z)$:
(Partial Derivative of f w.r.t. $x) \quad \frac{\partial f}{\partial x}:=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y, z)-f(x, y, z)}{\Delta x}$
(Partial Derivative of f w.r.t. y) $\quad \frac{\partial f}{\partial y}:=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y, z)-f(x, y, z)}{\Delta y}$
(Partial Derivative of f w.r.t. z) $\frac{\partial f}{\partial z}:=\lim _{\Delta z \rightarrow 0} \frac{f(x, y, z+\Delta z)-f(x, y, z)}{\Delta z}$

NOTATION:

"partial f partial x "	$\frac{\partial f}{\partial x}$	$\frac{\partial}{\partial x}[f(x, y, z)]$	f_{x}
"partial f partial y "	$\frac{\partial f}{\partial y}$	$\frac{\partial}{\partial y}[f(x, y, z)]$	f_{y}
"partial f partial z "	$\frac{\partial f}{\partial z}$	$\frac{\partial}{\partial z}[f(x, y, z)]$	f_{z}

$1^{s t}$-Order Partial Derivatives of $f(x, y, z)$

WEX 11-3-6: Let $f(x, y, z)=x y z . \quad$ Compute $\frac{\partial f}{\partial x}$.
$\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}[x y z]=($ Now treat $y \& z$ as constants $)=y z \frac{\partial}{\partial x}[x]=y z(1)=y z$

WEX 11-3-7: Let $f(x, y, z)=x y z . \quad$ Compute $\frac{\partial f}{\partial y}$.
$\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}[x y z]=($ Now treat $x \& z$ as constants $)=x z \frac{\partial}{\partial y}[y]=x z(1)=x z$

WEX 11-3-8: Let $f(x, y, z)=x y z . \quad$ Compute $\frac{\partial f}{\partial z}$.
$\frac{\partial f}{\partial z}=\frac{\partial}{\partial z}[x y z]=($ Now treat $x \& y$ as constants $)=x y \frac{\partial}{\partial z}[z]=x y(1)=x y$

$1^{s t}$-Order Partials of $f(x, y, z)$ (Interpretation)

Recall the interpretation of the $1^{s t}$-order ordinary derivative of $f(x)$:
$\frac{d f}{d x}$ measures the (instantaneous) rate of change of f as x changes.

Now, here's the interpretation of the $1^{s t}$-Order Partials of $f(x, y, z)$:
$\frac{\partial f}{\partial x}$ measures the rate of change of f as x changes, holding $y \& z$ constant.
$\frac{\partial f}{\partial y}$ measures the rate of change of f as y changes, holding $x \& z$ constant.
$\frac{\partial f}{\partial z}$ measures the rate of change of f as z changes, holding $x \& y$ constant.

$2^{\text {nd }}$-Order Partial Derivatives of $f(x, y)$

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & :=\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right]=\left(f_{x}\right)_{x}=f_{x x} \\
\frac{\partial^{2} f}{\partial y \partial x} & :=\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right]=\left(f_{x}\right)_{y}=f_{x y} \\
\frac{\partial^{2} f}{\partial x \partial y} & :=\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial y}\right]=\left(f_{y}\right)_{x}=f_{y x} \\
\frac{\partial^{2} f}{\partial y^{2}} & :=\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial y}\right]=\left(f_{y}\right)_{y}=f_{y y}
\end{aligned}
$$

REMARK: $\frac{\partial^{2} f}{\partial y \partial x}$ and $\frac{\partial^{2} f}{\partial x \partial y}$ are often called the mixed $2^{\text {nd }}$ partials of f.

$2^{\text {nd }}$-Order Partial Derivatives of $f(x, y, z)$

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & :=\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right]=\left(f_{x}\right)_{x}=f_{x x} \\
\frac{\partial^{2} f}{\partial y^{2}} & :=\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial y}\right]=\left(f_{y}\right)_{y}=f_{y y} \\
\frac{\partial^{2} f}{\partial z^{2}} & :=\frac{\partial}{\partial z}\left[\frac{\partial f}{\partial z}\right]=\left(f_{z}\right)_{z}=f_{z z} \\
\frac{\partial^{2} f}{\partial y \partial x} & :=\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right]=\left(f_{x}\right)_{y}=f_{x y} \\
\frac{\partial^{2} f}{\partial x \partial y} & :=\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial y}\right]=\left(f_{y}\right)_{x}=f_{y x} \\
\frac{\partial^{2} f}{\partial z \partial x} & :=\frac{\partial}{\partial z}\left[\frac{\partial f}{\partial x}\right]=\left(f_{x}\right)_{z}=f_{x z} \\
\frac{\partial^{2} f}{\partial x \partial z} & :=\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial z}\right]=\left(f_{z}\right)_{x}=f_{z x} \\
\frac{\partial^{2} f}{\partial z \partial y} & :=\frac{\partial}{\partial z}\left[\frac{\partial f}{\partial y}\right]=\left(f_{y}\right)_{z}=f_{y z} \\
\frac{\partial^{2} f}{\partial y \partial z} & :=\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial z}\right]=\left(f_{z}\right)_{y}=f_{z y}
\end{aligned}
$$

$3^{r d}$-Order Partial Derivatives of $f(x, y)$

$$
\begin{aligned}
& \frac{\partial^{3} f}{\partial x^{3}} \quad:=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial x^{2}}\right]=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right]\right]=f_{x x x} \\
& \frac{\partial^{3} f}{\partial y \partial x^{2}}:=\frac{\partial}{\partial y}\left[\frac{\partial^{2} f}{\partial x^{2}}\right]=\frac{\partial}{\partial y}\left[\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right]\right]=f_{x x y} \\
& \frac{\partial^{3} f}{\partial x \partial y \partial x}:=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial y \partial x}\right]=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right]\right]=f_{x y x} \\
& \frac{\partial^{3} f}{\partial y^{2} \partial x}:=\frac{\partial}{\partial y}\left[\frac{\partial^{2} f}{\partial y \partial x}\right]=\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right]\right]=f_{x y y} \\
& \frac{\partial^{3} f}{\partial x^{2} \partial y}:=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial x \partial y}\right]=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial y}\right]\right]=f_{y x x} \\
& \frac{\partial^{3} f}{\partial y \partial x \partial y}:=\frac{\partial}{\partial y}\left[\frac{\partial^{2} f}{\partial x \partial y}\right]=\frac{\partial}{\partial y}\left[\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial y}\right]\right]=f_{y x y} \\
& \frac{\partial^{3} f}{\partial x \partial y^{2}}:=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial y^{2}}\right]=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial y}\right]\right]=f_{y y x} \\
& \frac{\partial^{3} f}{\partial y^{3}}:=\frac{\partial}{\partial y}\left[\frac{\partial^{2} f}{\partial y^{2}}\right]=\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial y}\right]\right]=f_{y y y}
\end{aligned}
$$

$3^{r d}$-Order Partial Derivatives of $f(x, y, z)$

There are $273^{r d}$-order partials - too many to list! Here are seven of them:

$$
\begin{aligned}
\frac{\partial^{3} f}{\partial x^{3}} & :=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial x^{2}}\right]
\end{aligned}=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right]\right]=f_{x x x}, \begin{aligned}
& \frac{\partial^{3} f}{\partial z^{3}}:=\frac{\partial}{\partial z}\left[\frac{\partial^{2} f}{\partial z^{2}}\right]=\frac{\partial}{\partial z}\left[\frac{\partial}{\partial z}\left[\frac{\partial f}{\partial z}\right]\right]=f_{z z z} \\
& \frac{\partial^{3} f}{\partial z \partial y^{2}}:=\frac{\partial}{\partial z}\left[\frac{\partial^{2} f}{\partial y^{2}}\right]=\frac{\partial}{\partial z}\left[\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial y}\right]\right]=f_{y y z} \\
& \frac{\partial^{3} f}{\partial x^{2} \partial z}:=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial x \partial z}\right]=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial z}\right]\right]=f_{z x x} \\
& \frac{\partial^{3} f}{\partial x \partial z \partial x}:=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial z \partial x}\right] \\
& \frac{\partial^{3} f}{\partial x \partial y \partial z}:=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial z}\left[\frac{\partial f}{\partial x}\right]\right]=f_{x z x} \\
& \frac{\partial^{3} f}{\partial z \partial y \partial x}\left[\frac{\partial^{2} f}{\partial y \partial z}\right]=\frac{\partial}{\partial x}\left[\frac { \partial } { \partial y } \left[\frac{\partial f}{\partial z}\left[\frac{\left.\partial^{2} f\right]}{\partial y \partial x}\right]=\frac{\partial}{\partial z}\left[\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right]\right]=f_{z y x}\right.\right. \\
& =f_{x y z}
\end{aligned}
$$

PART II:

TOTAL DIFFERENTIALS \& ERROR ESTIMATION

Total Differentials

Definition

Given $f(x, y)$. Then, Total differential $d f:=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$
Given $f(x, y, z)$. Then, Total differential $d f:=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z$

WEX 11-3-9: Find the total differential of $f(x, y)=\sin (x y)$.
First, find the $1^{s t}$-order partials of f :
$f_{x}=\frac{\partial}{\partial x}[\sin (x y)]=($ Treat y as a constant $)=\cos (x y) \frac{\partial}{\partial x}[x y]=y \cos (x y)$
$f_{y}=\frac{\partial}{\partial y}[\sin (x y)]=($ Treat x as a constant $)=\cos (x y) \frac{\partial}{\partial y}[x y]=x \cos (x y)$
$\Longrightarrow d f=f_{x} d x+f_{y} d y=y \cos (x y) d x+x \cos (x y) d y$

Measurements are Never 100\% Accurate

If there's error in measuring x and y, how can one estimate the error in $f(x, y)$? If there's error in measuring x, y, z, how can one estimate the error in $g(x, y, z)$?

Linear Error Approximation

Definition

Given $f(x, y)$ and "small" errors $\Delta x, \Delta y$ in x, y.
Then, Linear error $\Delta f \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y$
Given $f(x, y, z)$ and "small" errors $\Delta x, \Delta y, \Delta z$ in x, y, z.
Then, Linear error $\Delta f \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y+\frac{\partial f}{\partial z} \Delta z$
REMARK: The error is "linear" in the sense that the expression contains no powers of Δx or Δy.

Linear Error Approximation

WEX 11-3-10: Given $f(x, y)=e^{x y}$ and "small" errors $\Delta x, \Delta y$ in x, y, find the linear error Δf.

First, find the $1^{s t}$-order partials of f :
$f_{x}=\frac{\partial}{\partial x}\left[e^{x y}\right]=($ Treat y as a constant $)=e^{x y} \frac{\partial}{\partial x}[x y]=y e^{x y}$
$f_{y}=\frac{\partial}{\partial y}\left[e^{x y}\right]=($ Treat x as a constant $)=e^{x y} \frac{\partial}{\partial y}[x y]=x e^{x y}$
Next, find the total differential $d f$:
$d f=f_{x} d x+f_{y} d y=y e^{x y} d x+x e^{x y} d y$
Finally, find the linear error Δf :

$$
\Delta f \approx y e^{x y} \Delta x+x e^{x y} \Delta y
$$

Notation for Continuous Derivatives (Calculus I)

Recall the notation for a continuous function f on a set S : $f \in C(S)$

Definition

Given $f(x)$ and set $S \subseteq \mathbb{R}$. Then:

$$
\begin{gathered}
f \in C^{1}(S) \Longleftrightarrow f, f^{\prime} \in C(S) \\
f \in C^{2}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime} \in C(S)
\end{gathered}
$$

Notation for Continuous Partial Derivatives

Recall the notation for a continuous function f on a set $S: \quad f \in C(S)$

Definition

Given $f(x, y)$ and set $S \subseteq \mathbb{R}^{2}$. Then:

$$
\begin{gathered}
f \in C^{(1,1)}(S) \Longleftrightarrow f, f_{x}, f_{y} \in C(S) \\
f \in C^{(2,2)}(S) \Longleftrightarrow f, f_{x}, f_{y}, f_{x x}, f_{y y}, f_{x y}, f_{y x} \in C(S)
\end{gathered}
$$

Definition

Given $f(x, y, z)$ and set $S \subseteq \mathbb{R}^{3}$. Then:

$$
\begin{gathered}
f \in C^{(1,1,1)}(S) \Longleftrightarrow f, f_{x}, f_{y}, f_{z} \in C(S) \\
f \in C^{(2,2,2)}(S) \Longleftrightarrow f, f_{x}, f_{y}, f_{z}, f_{x x}, f_{y y}, f_{z z}, f_{x y}, f_{y x}, f_{x z}, f_{z x}, f_{y z}, f_{z y} \in C(S)
\end{gathered}
$$

Differentiability

Theorem

(Sufficient Condition for Differentiability)
Given $f(x, y)$, then f is differentiable on set $S \subseteq \mathbb{R}^{2}$ if $f \in C^{(1,1)}(S)$
Given $f(x, y, z)$, then f is differentiable on set $S \subseteq \mathbb{R}^{3}$ if $f \in C^{(1,1,1)}(S)$
REMARK: To learn the necessary condition(s) for differentiability of $f(x, y)$ or $f(x, y, z)$, take Advanced Calculus.

Fin.

