Functions of Several Variables: Chain Rules

Calculus III

Josh Engwer

TTU

29 September 2014

PART I:

MULTIVARIABLE CHAIN RULES

1-1 Chain Rule (from Calculus I)

Let $y=f(x) \in C^{1}$ where $x=g(t) \in C^{1}$.
Determine the chain rule formula for $\frac{d y}{d t}$.

1-1 Chain Rule (from Calculus I)

Let $y=f(x) \in C^{1}$ where $x=g(t) \in C^{1}$.
Determine the chain rule formula for $\frac{d y}{d t}$.
First, sketch the dependency tree for y :

1-1 Chain Rule (from Calculus I)

Let $y=f(x) \in C^{1}$ where $x=g(t) \in C^{1}$.
Determine the chain rule formula for $\frac{d y}{d t}$. "Slide down" the tree:

Then, $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}$

1-1 Chain Rule (from Calculus I)

Proposition

Let $y=f(x) \in C^{1}$ where $x=g(t) \in C^{1}$. Then:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

$$
\begin{array}{r}
y \\
\left.\frac{d y}{d x}\right|_{x} ^{y} \\
\left.\frac{d x}{d t} \right\rvert\, \\
t
\end{array}
$$

"1-1" means 1 intermediate variable (x) and 1 independent variable (t).

1-2 Chain Rule

Let $z=f(x) \in C^{1}$ where $x=g(s, t) \in C^{(1,1)}$.
Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

1-2 Chain Rule

Let $z=f(x) \in C^{1}$ where $x=g(s, t) \in C^{(1,1)}$.
Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.
First, sketch the dependency tree for z :

1-2 Chain Rule

Let $z=f(x) \in C^{1}$ where $x=g(s, t) \in C^{(1,1)}$.
Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.
"Slide down" the branch of the tree that has s as its bottom node (in red):

Then, $\frac{\partial z}{\partial s}=\frac{d z}{d x} \frac{\partial x}{\partial s}$

1-2 Chain Rule

Let $z=f(x) \in C^{1}$ where $x=g(s, t) \in C^{(1,1)}$.
Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.
"Slide down" the branch of the tree that has t as its bottom node (in red):

Then, $\frac{\partial z}{\partial t}=\frac{d z}{d x} \frac{\partial x}{\partial t}$

1-2 Chain Rule

Proposition

Let $z=f(x) \in C^{1}$ where $x=g(s, t) \in C^{(1,1)}$. Then:

$$
\frac{\partial z}{\partial s}=\frac{d z}{d x} \frac{\partial x}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{d z}{d x} \frac{\partial x}{\partial t}
$$

"1-2" means 1 intermediate variable (x) and 2 independent var's (s, t).

2-1 Chain Rule

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(t) \in C^{1}$ and $y=h(t) \in C^{1}$.
Determine the chain rule formula for $\frac{d z}{d t}$.

2-1 Chain Rule

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(t) \in C^{1}$ and $y=h(t) \in C^{1}$.
Determine the chain rule formula for $\frac{d z}{d t}$.
First, sketch the dependency tree for z :

2-1 Chain Rule

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(t) \in C^{1}$ and $y=h(t) \in C^{1}$.
Determine the chain rule formula for $\frac{d z}{d t}$.
"Slide down" each branch of the tree that has t as its bottom node (in red).

Then, $\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}$

2-1 Chain Rule

Proposition

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(t) \in C^{1}$ and $y=h(t) \in C^{1}$. Then:

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

2-2 Chain Rule

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(s, t) \in C^{(1,1)}$ and $y=h(s, t) \in C^{(1,1)}$.
Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

2-2 Chain Rule

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(s, t) \in C^{(1,1)}$ and $y=h(s, t) \in C^{(1,1)}$.
Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.
First, sketch the dependency tree for z :

2-2 Chain Rule

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(s, t) \in C^{(1,1)}$ and $y=h(s, t) \in C^{(1,1)}$.
Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.
"Slide down" each branch of the tree that has s as its bottom node (in red).

$\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$

2-2 Chain Rule

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(s, t) \in C^{(1,1)}$ and $y=h(s, t) \in C^{(1,1)}$.
Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.
"Slide down" each branch of the tree that has t as its bottom node (in red).

$\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$

2-2 Chain Rule

Proposition

Let $z=f(x, y) \in C^{(1,1)}$ where $x=g(s, t) \in C^{(1,1)}$ and $y=h(s, t) \in C^{(1,1)}$. Then:

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

"2-2" means 2 intermediate var's (x, y) and 2 independent var's (s, t).

1-3 Chain Rule

Proposition

Let $z=f(x) \in C^{1}$ where $x=g(r, s, t) \in C^{(1,1,1)}$. Then:

$$
\frac{\partial z}{\partial r}=\frac{d z}{d x} \frac{\partial x}{\partial r} \quad \frac{\partial z}{\partial s}=\frac{d z}{d x} \frac{\partial x}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{d z}{d x} \frac{\partial x}{\partial t}
$$

"1-3" means 1 intermediate variable (x) and 3 independent var's (r, s, t).

3-1 Chain Rule

Proposition

Let $w=f(x, y, z) \in C^{(1,1,1)}$ s.t. $x=g(t) \in C^{1}, y=h(t) \in C^{1}, z=p(t) \in C^{1}$. Then:

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

"3-1" means 3 intermediate var's (x, y, z) and 1 independent variable (t).

2-3 Chain Rule

Proposition

$$
\begin{aligned}
& \text { Let } z=f(x, y) \in C^{(1,1)} \text { s.t. } x=g(r, s, t) \in C^{(1,1,1)}, y=h(r, s, t) \in C^{(1,1,1)} \text {. Then: } \\
& \frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \quad \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

"2-3" means 2 intermediate var's (x, y) and 3 independent var's (r, s, t).

3-2 Chain Rule

Proposition

Let $w=f(x, y, z) \in C^{(1,1,1)}$ s.t. $x=g(s, t), y=h(s, t), z=p(s, t)$. Then:

$$
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \quad \frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t}
$$

" $3-2$ " means 3 intermediate var's (x, y, z) and 2 independent var's (s, t).

3-3 Chain Rule

Proposition

Let $w=f(x, y, z) \in C^{(1,1,1)}$ s.t. $x=g(r, s, t), y=h(r, s, t), z=p(r, s, t)$. Then:

$$
\begin{gathered}
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \quad \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \\
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t}
\end{gathered}
$$

" $3-3$ " means 3 intermediate var's (x, y, z) and 3 independent var's (r, s, t).

PART II:
 IMPLICIT DIFFERENTIATION

Implicit Differentiation (2-Variable Function)

Proposition

Let $F(x, y)=0$ s.t. $F \in C^{(1,1)}$ and y is implicitly a function of x. Then:

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}, \text { provided } F_{y} \neq 0
$$

Implicit Differentiation (3-Variable Function)

Proposition

Let $F(x, y, z)=0$ s.t. $F \in C^{(1,1,1)}$ and z is implicitly a function of (x, y). Then:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \text { provided } F_{z} \neq 0 \\
& \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}, \text { provided } F_{z} \neq 0
\end{aligned}
$$

$$
\begin{gathered}
\partial F / \partial x=0 \\
\Longrightarrow \frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0 \\
\Longrightarrow \\
\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=-\frac{\partial F}{\partial x}
\end{gathered}
$$

$\Longrightarrow \frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}=-\frac{F_{x}}{F_{z}}$
(Similarly for $\partial z / \partial y$)

Related Rates....Revisited

WEX 11-5-1:

A rectangle is changing in such a way that its length ℓ is decreasing at a rate of $4 \mathrm{~mm} / \mathrm{min}$ and its width w is increasing at a rate of $10 \mathrm{~mm} / \mathrm{min}$.
At what rates are its area \& perimeter changing when the length is 5 mm and the width is 12 mm ?
$1^{s t}$, realize that the independent variable is time (t).
$2^{\text {nd }}$, recall the formulas for area \& perimeter: $A=\ell w \quad P=2 \ell+2 w$.
$3^{r d}$, use "2-1" Chain Rule: $\frac{d A}{d t}=\frac{\partial A}{\partial \ell} \frac{d \ell}{d t}+\frac{\partial A}{\partial w} \frac{d w}{d t} \quad \frac{d P}{d t}=\frac{\partial P}{\partial \ell} \frac{d \ell}{d t}+\frac{\partial P}{\partial w} \frac{d w}{d t}$
$4^{\text {th }}$, extract info: $\ell=5, w=12, \frac{d \ell}{d t}=-4, \frac{d w}{d t}=10$.
$5^{\text {th }}$, compute the partials: $\frac{\partial A}{\partial \ell}=w=12, \quad \frac{\partial A}{\partial w}=\ell=5 \quad \frac{\partial P}{\partial \ell}=2, \quad \frac{\partial P}{\partial w}=2$
$\frac{d A}{d t}=\frac{\partial A}{\partial \ell} \frac{d \ell}{d t}+\frac{\partial A}{\partial w} \frac{d w}{d t}=(12)(-4)+(5)(10)=2 \mathrm{~mm}^{2} / \mathrm{min}$
$\frac{d P}{d t}=\frac{\partial P}{\partial \ell} \frac{d \ell}{d t}+\frac{\partial P}{\partial w} \frac{d w}{d t}=(2)(-4)+(2)(10)=12 \mathrm{~mm} / \mathrm{min}$

Fin.

