Functions of Several Variables: Chain Rules

Josh Engwer

TTU

29 September 2014

Josh Engwer (TTU)

Functions of Several Variables: Chain Rules

PART I: MULTIVARIABLE CHAIN RULES

Let
$$y = f(x) \in C^1$$
 where $x = g(t) \in C^1$.
Determine the chain rule formula for $\frac{dy}{dt}$.

1-1 Chain Rule (from Calculus I)

Let $y = f(x) \in C^1$ where $x = g(t) \in C^1$. Determine the chain rule formula for $\frac{dy}{dt}$.

First, sketch the **dependency tree** for *y*:

$$\begin{array}{c|c} y \\ \underline{dy} \\ dx \\ x \\ \underline{dx} \\ \underline{dt} \\ t \end{array}$$

1-1 Chain Rule (from Calculus I)

Let $y = f(x) \in C^1$ where $x = g(t) \in C^1$.

Determine the chain rule formula for $\frac{dy}{dt}$. "Slide down" the tree:

 $\begin{array}{c|c} y \\ \underline{dy} \\ dx \\ x \\ \underline{dx} \\ \underline{dt} \\ t \end{array}$

Then,
$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

1-1 Chain Rule (from Calculus I)

Proposition

Let $y = f(x) \in C^1$ where $x = g(t) \in C^1$. Then:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

"1-1" means 1 intermediate variable (x) and 1 independent variable (t).

Let
$$z = f(x) \in C^1$$
 where $x = g(s, t) \in C^{(1,1)}$.
Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

Let $z = f(x) \in C^1$ where $x = g(s, t) \in C^{(1,1)}$.

Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

First, sketch the **dependency tree** for *z*:

Let
$$z = f(x) \in C^1$$
 where $x = g(s, t) \in C^{(1,1)}$.

Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

"Slide down" the branch of the tree that has *s* as its bottom node (in red):

Then,
$$\frac{\partial z}{\partial s} = \frac{dz}{dx} \frac{\partial x}{\partial s}$$

Let
$$z = f(x) \in C^1$$
 where $x = g(s, t) \in C^{(1,1)}$.

Determine the chain rule formulas for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

"Slide down" the branch of the tree that has *t* as its bottom node (in red):

Then,
$$\frac{\partial z}{\partial t} = \frac{dz}{dx}\frac{\partial x}{\partial t}$$

Proposition

Let $z = f(x) \in C^1$ where $x = g(s, t) \in C^{(1,1)}$. Then: $\frac{\partial z}{\partial s} = \frac{dz}{dx}\frac{\partial x}{\partial s}$ $\frac{\partial z}{\partial t} = \frac{dz}{dx}\frac{\partial x}{\partial t}$

"1-2" means 1 intermediate variable (x) and 2 independent var's (s, t).

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(t) \in C^1$ and $y = h(t) \in C^1$. Determine the chain rule formula for $\frac{dz}{dt}$.

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(t) \in C^1$ and $y = h(t) \in C^1$. Determine the chain rule formula for $\frac{dz}{dt}$. First, sketch the **dependency tree** for *z*:

Let
$$z = f(x, y) \in C^{(1,1)}$$
 where $x = g(t) \in C^1$ and $y = h(t) \in C^1$.
Determine the chain rule formula for $\frac{dz}{dt}$.

"Slide down" each branch of the tree that has *t* as its bottom node (in red).

Then,
$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Proposition

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(t) \in C^1$ and $y = h(t) \in C^1$. Then:

 $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$

"2-1" means 2 intermediate var's (x, y) and 1 independent variable (t).

Josh Engwer (TTU)

Functions of Several Variables: Chain Rules

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(s, t) \in C^{(1,1)}$ and $y = h(s, t) \in C^{(1,1)}$. Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(s, t) \in C^{(1,1)}$ and $y = h(s, t) \in C^{(1,1)}$. Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$. First, sketch the **dependency tree** for *z*:

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(s, t) \in C^{(1,1)}$ and $y = h(s, t) \in C^{(1,1)}$. Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

"Slide down" each branch of the tree that has *s* as its bottom node (in red).

 $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(s, t) \in C^{(1,1)}$ and $y = h(s, t) \in C^{(1,1)}$. Determine the chain rule formula for $\frac{\partial z}{\partial s} \& \frac{\partial z}{\partial t}$.

"Slide down" each branch of the tree that has t as its bottom node (in red).

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

Proposition

Let $z = f(x, y) \in C^{(1,1)}$ where $x = g(s, t) \in C^{(1,1)}$ and $y = h(s, t) \in C^{(1,1)}$. Then: $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} \qquad \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$

"2-2" means 2 intermediate var's (x, y) and 2 independent var's (s, t).

Josh Engwer (TTU)

Functions of Several Variables: Chain Rules

Proposition

Let $z = f(x) \in C^1$ where $x = g(r, s, t) \in C^{(1,1,1)}$. Then:

$\partial z dz \; \partial x$	$\partial z dz \; \partial x$	$\partial z dz \; \partial x$
$\overline{\partial r} = \overline{dx} \overline{\partial r}$	$\overline{\partial s} = \overline{dx} \overline{\partial s}$	$\frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} \frac{\partial t}{\partial t}$

"1-3" means 1 intermediate variable (x) and 3 independent var's (r, s, t).

Proposition

Let $w = f(x, y, z) \in C^{(1,1,1)}$ s.t. $x = g(t) \in C^1$, $y = h(t) \in C^1$, $z = p(t) \in C^1$. Then:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

"3-1" means 3 intermediate var's (x, y, z) and 1 independent variable (t).

Proposition

"2-3" means 2 intermediate var's (x, y) and 3 independent var's (r, s, t).

Josh Engwer (TTU)

Functions of Several Variables: Chain Rules

Proposition

Let
$$w = f(x, y, z) \in C^{(1,1,1)}$$
 s.t. $x = g(s, t), y = h(s, t), z = p(s, t)$. Then:

∂w	$\partial w \partial x$	$\partial w \partial y$	$\partial w \partial z$	∂w	$\partial w \partial x$	$\int \partial w \partial y = \partial$	w Əz
$\overline{\partial s} =$	$\overline{\partial x} \overline{\partial s}^+$	$\overline{\partial y} \overline{\partial s}^+$	$\overline{\partial z} \ \overline{\partial s}$	$\frac{\partial t}{\partial t} =$	$\overline{\partial x} \ \overline{\partial t}$	$+ \frac{\partial y}{\partial t} \frac{\partial t}{\partial t} + \frac{\partial y}{\partial t}$	$\partial z \ \overline{\partial t}$

"3-2" means 3 intermediate var's (x, y, z) and 2 independent var's (s, t).

Proposition

Let
$$w = f(x, y, z) \in C^{(1,1,1)}$$
 s.t. $x = g(r, s, t), y = h(r, s, t), z = p(r, s, t)$. Then:

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r} \qquad \qquad \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial s}$$
$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial t}$$

"3-3" means 3 intermediate var's (x, y, z) and 3 independent var's (r, s, t).

PART II: IMPLICIT DIFFERENTIATION

Implicit Differentiation (2-Variable Function)

Proposition

Let F(x, y) = 0 s.t. $F \in C^{(1,1)}$ and y is implicitly a function of x. Then:

Implicit Differentiation (3-Variable Function)

Proposition

Let F(x, y, z) = 0 s.t. $F \in C^{(1,1,1)}$ and z is implicitly a function of (x, y). Then:

$$rac{\partial z}{\partial x}=-rac{F_x}{F_z}$$
, provided $F_z
eq 0$

$$rac{\partial z}{\partial y}=-rac{F_y}{F_z}$$
, provided $F_z
eq 0$

Related Rates....Revisited

WEX 11-5-1:

A rectangle is changing in such a way that its length ℓ is decreasing at a rate of 4 mm/min and its width *w* is increasing at a rate of 10 mm/min. At what rates are its area & perimeter changing when the length is 5 mm and

the width is 12 mm?

 1^{st} , realize that the **independent variable** is time (t).

 2^{nd} , recall the formulas for area & perimeter: $A = \ell W$ $P = 2\ell + 2w$. 3rd, use "2-1" Chain Rule: $\frac{dA}{dt} = \frac{\partial A}{\partial \ell} \frac{d\ell}{dt} + \frac{\partial A}{\partial w} \frac{dw}{dt}$ $\frac{dP}{dt} = \frac{\partial P}{\partial \ell} \frac{d\ell}{dt} + \frac{\partial P}{\partial w} \frac{dw}{dt}$ 4th, extract info: $\ell = 5$, w = 12, $\frac{d\ell}{dt} = -4$, $\frac{dw}{dt} = 10$. 5th, compute the partials: $\frac{\partial A}{\partial \ell} = w = 12$, $\frac{\partial A}{\partial w} = \ell = 5$ $\frac{\partial P}{\partial \ell} = 2$, $\frac{\partial P}{\partial w} = 2$ $\frac{dA}{dt} = \frac{\partial A}{\partial \ell} \frac{d\ell}{dt} + \frac{\partial A}{\partial w} \frac{dw}{dt} = (12)(-4) + (5)(10) = \boxed{2 \text{ mm}^2/\text{min}}$ $\frac{dP}{dt} = \frac{\partial P}{\partial \ell} \frac{d\ell}{dt} + \frac{\partial P}{\partial w} \frac{dw}{dt} = (2)(-4) + (2)(10) = \boxed{12 \text{ mm/min}}$

Fin.