Functions of Several Variables: Gradients Calculus III

Josh Engwer

TTU

01 October 2014

Josh Engwer (TTU)

PART I:

GRADIENTS & DIRECTIONAL DERIVATIVES

Function of Several Variables (Gradient)

Definition

Let $f(x, y) \in C^{(1,1)}$. Then the **gradient** of *f* is a <u>vector</u> in \mathbb{R}^2 given by:

grad
$$f \equiv \nabla f(x, y) \equiv \nabla f := \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle = f_x \hat{\mathbf{i}} + f_y \hat{\mathbf{j}}$$

Definition

Let $f(x, y, z) \in C^{(1,1,1)}$. Then the **gradient** of *f* is a <u>vector</u> in \mathbb{R}^3 given by:

grad
$$f \equiv \nabla f(x, y, z) \equiv \nabla f := \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle = f_x \hat{\mathbf{i}} + f_y \hat{\mathbf{j}} + f_z \hat{\mathbf{k}}$$

READ: "grad f" or "del f"

REMARK: The gradient encapsulates all the 1st-order partials into a vector.

Gradient (Computation)

WEX 11-6-1: Given f(x, y) = xy, compute ∇f and $\nabla f(4, -7)$.

First, find all 1st-order partials:
$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} [xy] = y$$
, $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} [xy] = x$
 $\implies \nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle = [\langle y, x \rangle] \implies \nabla f(4, -7) = [\langle -7, 4 \rangle]$
WEX 11-6-2: Let $g(x, y, z) = xy + yz + xz$, find ∇g and $\nabla g(1, 2, -3)$.
First, find all 1st-order partials: $g_x = y + z$, $g_y = x + z$, $g_z = y + x$
 $\implies \nabla g = \langle g_x, g_y, g_z \rangle = [\langle y + z, x + z, y + x \rangle]$

$$\implies \nabla g(1,2,-3) = \langle (2) + (-3), (1) + (-3), (2) + (1) \rangle = \boxed{\langle -1, -2, 3 \rangle}$$

Let $f, g \in C^{(1,1)}$ or $f, g \in C^{(1,1,1)}$. Then:

RULE	FORM	REMARK(S)
Constant Rule	$ abla k = ec{0}$	$k\in \mathbb{R}$
Constant Multiple Rule	$\nabla(kf) = k\nabla f$	$k\in \mathbb{R}$
Sum/Diff Rule	$\nabla(f\pm g)=\nabla f\pm \nabla g$	
Product Rule	$\nabla(fg) = f\nabla g + g\nabla f$	
Quotient Rule	$\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$	g eq 0
Power Rule	$\nabla\left(f^{n}\right) = n f^{n-1} \nabla f$	

QUOTIENT RULE: "Lo Grad-Hi Minus Hi Grad-Lo All Over Lo Squared"

PROOF OF SUM RULE:

Let $f, g \in C^{(1,1)}$. Then:

$$\nabla(f+g) = \left\langle \frac{\partial}{\partial x} \left[f+g \right], \frac{\partial}{\partial y} \left[f+g \right] \right\rangle$$

= $\left\langle f_x + g_x, f_y + g_y \right\rangle$
= $\left\langle f_x, f_y \right\rangle + \left\langle g_x, g_y \right\rangle$
= $\nabla f + \nabla g$

Let $f, g \in C^{(1,1,1)}$. Then: $\nabla(f+g) = \left\langle \frac{\partial}{\partial x} \left[f+g \right], \frac{\partial}{\partial y} \left[f+g \right], \frac{\partial}{\partial z} \left[f+g \right] \right\rangle$ $= \langle f_x + g_x, f_y + g_y, f_z + g_z \rangle$ $= \langle f_x, f_y, f_z \rangle + \langle g_x, g_y, g_z \rangle$ $= \nabla f + \nabla g$

QED

Definition

Let $f(x, y) \in C^{(1,1)}$. Then, the **directional derivative** of f at point $P_0(x_0, y_0)$ in the direction of <u>unit vector</u> $\hat{\mathbf{v}} \in \mathbb{R}^2$ is:

$$D_{\mathbf{v}}f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \widehat{\mathbf{v}}$$

Definition

Let $f(x, y, z) \in C^{(1,1,1)}$. Then, the **directional derivative** of *f* at point $P_0(x_0, y_0, z_0)$ in the direction of <u>unit vector</u> $\hat{\mathbf{v}} \in \mathbb{R}^3$ is:

$$D_{\mathbf{v}}f(x_0, y_0, z_0) = \nabla f(x_0, y_0, z_0) \cdot \widehat{\mathbf{v}}$$

REMARK: Directional Derivatives are generalizations of 1st-order partials:

$$D_{\mathbf{i}}f(x,y,z) = \nabla f \cdot \widehat{\mathbf{i}} = \langle f_x, f_y, f_z \rangle \cdot \langle 1, 0, 0 \rangle = (f_x)(1) + (f_y)(0) + (f_z)(0) = f_x = \frac{\partial f}{\partial x}$$

Directional Derivatives

WEX 11-6-3: Let
$$f(x, y) = x^2 - y^2$$
 and $\mathbf{u} = \langle 3, 5 \rangle$. Compute $D_{\mathbf{u}}f(1, 2)$.

1st normalize u:
$$\hat{\mathbf{u}} = \frac{\mathbf{u}}{||\mathbf{u}||} = \frac{\langle 3, 5 \rangle}{\sqrt{3^2 + 5^2}} = \left\langle \frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}} \right\rangle$$

 $\nabla f = \langle f_x, f_y \rangle = \langle 2x, -2y \rangle$
 $D_{\mathbf{u}}f(1, 2) = \nabla f(1, 2) \cdot \hat{\mathbf{u}}$
 $= \langle 2(1), -2(2) \rangle \cdot \hat{\mathbf{u}}$
 $= \langle 2, -4 \rangle \cdot \left\langle \frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}} \right\rangle$
 $= (2) \left(\frac{3}{\sqrt{34}} \right) + (-4) \left(\frac{5}{\sqrt{34}} \right)$
 $= \left[-\frac{14}{\sqrt{34}} \right]$

Gradient (Steepest Ascent/Descent)

Proposition

Given surface z = f(x, y) such that $f \in C^{(1,1)}$. Then:

- (*i*) ∇f is **normal** to a level curve that contains point (*x*, *y*).
- (*ii*) ∇f points in the (compass) direction of **steepest ascent** of *f* from (*x*, *y*).
- (*iii*) $-\nabla f$ points in the direction of **steepest descent** of *f* from point (*x*, *y*).
- (*iv*) $||\nabla f||$ is the **maximum rate of change** of f at point (x, y).

REMARK:

At point (x, y), *f* increases most rapidly in the direction of ∇f . At point (x, y), *f* decreases most rapidly in the direction of $-\nabla f$.

PROOF:

 $\begin{array}{l} (iv): \text{Let unit vector } \widehat{\mathbf{v}} \in \mathbb{R}^2 \text{ point in direction of steepest ascent.} \\ \text{Let } \theta \in [0, \pi] \text{ be the angle between vectors } \widehat{\mathbf{v}} \& \nabla f. \\ \Longrightarrow D_{\mathbf{v}} f = \nabla f \cdot \widehat{\mathbf{v}} = ||\nabla f|| ||\widehat{\mathbf{v}}|| \cos \theta = ||\nabla f||(1) \cos \theta = ||\nabla f|| \cos \theta \\ \Longrightarrow \max (D_{\mathbf{v}} f) = \max_{\theta \in [0, \pi]} (||\nabla f|| \cos \theta) = ||\nabla f|| \max_{\theta \in [0, \pi]} (\cos \theta) = ||\nabla f||(1) = ||\nabla f|| \\ (ii): \max_{\theta \in [0, \pi]} (\cos \theta) = 1 \implies \theta = 0 \implies \widehat{\mathbf{v}} \& \nabla f \text{ point in same direction.} \\ \end{array}$

Gradient (Steepest Ascent/Descent)

Given the **contour plot** (level curve plot) of a surface z = f(x, y).

Gradient ∇f is **normal** to a level curve that contains point (x, y). ∇f points in the (compass) direction of **steepest ascent** of *f* from point (x, y). $-\nabla f$ points in the direction of **steepest descent** of *f* from point (x, y). $||\nabla f||$ is the **maximum rate of change** of *f* at point (x, y).

Gradient (Steepest Ascent)

Remember, given a surface z = f(x, y):

 ∇f lies on the *xy*-plane & points in **compass direction** of **steepest ascent**.

Gradient (Steepest Ascent/Descent)

WEX 11-6-4: Given $f(x, y) = 3 \tan(\pi x y)$:

In what direction is *f* increasing most rapidly at point P(2,3)? What is the maximum rate of increase? In what direction is *f* decreasing most rapidly at point P(2,3)?

$$\nabla f = \langle f_x, f_y \rangle = \langle 3\pi y \sec^2(\pi xy), 3\pi x \sec^2(\pi xy) \rangle$$

$$\implies \nabla f(2,3) = \langle 3\pi(3) \sec^2[\pi(2)(3)], 3\pi(2) \sec^2[\pi(2)(3)] \rangle$$

$$= \langle 9\pi \sec^2(6\pi), 6\pi \sec^2(6\pi) \rangle$$

$$= \langle 9\pi \sec^2(0), 6\pi \sec^2(0) \rangle$$

$$= \langle 9\pi, 6\pi \rangle$$

∴ *f* increases most rapidly at point *P* in the direction of $\langle 9\pi, 6\pi \rangle$ ∴ *f* decreases most rapidly at point *P* in the direction of $\langle -9\pi, -6\pi \rangle$ $||\nabla f(2,3)|| = ||\langle 9\pi, 6\pi \rangle|| = \sqrt{(9\pi)^2 + (6\pi)^2} = \sqrt{117\pi^2} = \pi\sqrt{117}$ ∴ The maximum rate of increase from point *P* is $\lceil \pi\sqrt{117} \rceil \approx 41.8$

PART II: TANGENT PLANES

Proposition

Given level surface F(x, y, z) = k, where $k \in \mathbb{R}$ and $F \in C^{(1,1)}$. Let $P_0(x_0, y_0, z_0)$ be a point on the level surface s.t. $\nabla F(x_0, y_0, z_0) \neq \vec{0}$. Then: The equation of the **tangent plane** \mathbb{T} to the level surface at point P_0 is:

 $\mathbb{T}: F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$

The equation of the **normal line** ℓ to the level surface at point P_0 is:

 $\ell(t) = \langle x_0 + F_x(x_0, y_0, z_0)t, y_0 + F_y(x_0, y_0, z_0)t, z_0 + F_z(x_0, y_0, z_0)t \rangle$

s.t. \equiv "such that"

Tangent Plane & Normal Line to a Level Surface

WEX 11-6-5: Given $F(x, y, z) = x^2 y^3 z^4$:

(a) Find equation of tangent plane \mathbb{T} to level surface F(x, y, z) = 1 at (1, 1, 1).

 $\nabla F = \langle F_x, F_y, F_z \rangle = \langle 2xy^3 z^4, 3x^2 y^2 z^4, 4x^2 y^3 z^3 \rangle \implies \nabla F(1, 1, 1) = \langle 2, 3, 4 \rangle$

Observe that $\nabla F(1, 1, 1)$ is a **normal vector** to the desired tangent plane \mathbb{T} . Hence:

$$2x + 3y + 4z + D = 0 \implies 2(1) + 3(1) + 4(1) + D = 0 \implies D = -9$$

 \therefore Equation of tangent plane is $\mathbb{T}: 2x + 3y + 4z - 9 = 0$

(b) Find equation of normal line ℓ to level surface F(x, y, z) = 1 at point (1, 1, 1). The normal line $\ell \parallel$ gradient $\nabla F(1, 1, 1) = \langle 2, 3, 4 \rangle$ and contains point (1, 1, 1).

 \therefore Equation of normal line to level surface is $\ell(t) = \langle 1 + 2t, 1 + 3t, 1 + 4t \rangle$

Tangent Plane & Normal Line to Surface z = f(x, y)

- **WEX 11-6-6:** Given surface $S : z = -x^2 y^2$: (a) Find equation of tangent plane \mathbb{T} to surface *S* at point (1, 1, -2).
- 1st write surface *S* as a **level surface**: $z = -x^2 - y^2 \implies F(x, y, z) := z + x^2 + y^2 = 0$ $\nabla F = \langle F_x, F_y, F_z \rangle = \langle 2x, 2y, 1 \rangle \implies \nabla F(1, 1, -2) = \langle 2, 2, 1 \rangle$ Observe that $\nabla F(1, 1, -2)$ is a **normal vector** to the desired tangent plane \mathbb{T} .

Observe that $\nabla F(1, 1, -2)$ is a **normal vector** to the desired tangent plane \mathbb{T} . Hence:

$$2x + 2y + z + D = 0 \implies 2(1) + 2(1) + (-2) + D = 0 \implies D = -2$$

 \therefore Equation of tangent plane is $\mathbb{T}: 2x + 2y + z - 2 = 0$

(b) Find equation of normal line ℓ to surface *S* at point (1, 1, -2).

The normal line $\ell \parallel$ gradient $\nabla F(1, 1, -2) = \langle 2, 2, 1 \rangle$ and contains pt (1, 1, -2).

 \therefore Equation of normal line to level surface is $\ell(t) = \langle 1 + 2t, 1 + 2t, -2 + t \rangle$

Tangent Plane \mathbb{T} & Normal Line ℓ to Surface S

Fin.