Functions of Several Variables: Gradients

Calculus III

Josh Engwer

TTU

01 October 2014

PART I:

GRADIENTS \& DIRECTIONAL DERIVATIVES

Function of Several Variables (Gradient)

Definition

Let $f(x, y) \in C^{(1,1)}$. Then the gradient of f is a vector in \mathbb{R}^{2} given by:

$$
\operatorname{grad} f \equiv \nabla f(x, y) \equiv \nabla f:=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=f_{x} \widehat{\mathbf{i}}+f_{y} \widehat{\mathbf{j}}
$$

Definition

Let $f(x, y, z) \in C^{(1,1,1)}$. Then the gradient of f is a vector in \mathbb{R}^{3} given by:

$$
\operatorname{grad} f \equiv \nabla f(x, y, z) \equiv \nabla f:=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=f_{x} \widehat{\mathbf{i}}+f_{y} \widehat{\mathbf{j}}+f_{z} \widehat{\mathbf{k}}
$$

READ: "grad f " or "del f "
REMARK: The gradient encapsulates all the $1^{\text {st }}$-order partials into a vector.

Gradient (Computation)

WEX 11-6-1: Given $f(x, y)=x y$, compute ∇f and $\nabla f(4,-7)$.
First, find all $1^{s t}$-order partials: $\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}[x y]=y, \quad \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}[x y]=x$

$$
\Longrightarrow \nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\langle y, x\rangle \Longrightarrow \nabla f(4,-7)=\langle-7,4\rangle
$$

WEX 11-6-2: Let $g(x, y, z)=x y+y z+x z$, find ∇g and $\nabla g(1,2,-3)$.
First, find all $1^{s t}$-order partials: $g_{x}=y+z, \quad g_{y}=x+z, \quad g_{z}=y+x$

$$
\begin{aligned}
& \Longrightarrow \nabla g=\left\langle g_{x}, g_{y}, g_{z}\right\rangle=\langle y+z, x+z, y+x\rangle \\
& \Longrightarrow \nabla g(1,2,-3)=\langle(2)+(-3),(1)+(-3),(2)+(1)\rangle=\langle-1,-2,3\rangle
\end{aligned}
$$

Gradient (Properties)

Let $f, g \in C^{(1,1)}$ or $f, g \in C^{(1,1,1)}$. Then:

RULE	FORM	REMARK(S)
Constant Rule	$\nabla k=\overrightarrow{\mathbf{0}}$	$k \in \mathbb{R}$
Constant Multiple Rule	$\nabla(k f)=k \nabla f$	$k \in \mathbb{R}$
Sum/Diff Rule	$\nabla(f \pm g)=\nabla f \pm \nabla g$	
Product Rule	$\nabla(f g)=f \nabla g+g \nabla f$	
Quotient Rule	$\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}$	$g \neq 0$
Power Rule	$\nabla\left(f^{n}\right)=n f^{n-1} \nabla f$	

QUOTIENT RULE: "Lo Grad-Hi Minus Hi Grad-Lo All Over Lo Squared"

Gradient (Proof of Sum Rule)

PROOF OF SUM RULE:

Let $f, g \in C^{(1,1)}$. Then:

$$
\begin{aligned}
\nabla(f+g) & =\left\langle\frac{\partial}{\partial x}[f+g], \frac{\partial}{\partial y}[f+g]\right\rangle \\
& =\left\langle f_{x}+g_{x}, f_{y}+g_{y}\right\rangle \\
& =\left\langle f_{x}, f_{y}\right\rangle+\left\langle g_{x}, g_{y}\right\rangle \\
& =\nabla f+\nabla g
\end{aligned}
$$

Let $f, g \in C^{(1,1,1)}$. Then:

$$
\begin{aligned}
\nabla(f+g) & =\left\langle\frac{\partial}{\partial x}[f+g], \frac{\partial}{\partial y}[f+g], \frac{\partial}{\partial z}[f+g]\right\rangle \\
& =\left\langle f_{x}+g_{x}, f_{y}+g_{y}, f_{z}+g_{z}\right\rangle \\
& =\left\langle f_{x}, f_{y}, f_{z}\right\rangle+\left\langle g_{x}, g_{y}, g_{z}\right\rangle \\
& =\nabla f+\nabla g
\end{aligned}
$$

QED

Directional Derivatives

Definition

Let $f(x, y) \in C^{(1,1)}$. Then, the directional derivative of f at point $P_{0}\left(x_{0}, y_{0}\right)$ in the direction of unit vector $\widehat{\mathbf{v}} \in \mathbb{R}^{2}$ is:

$$
D_{\mathbf{v}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \widehat{\mathbf{v}}
$$

Definition

Let $f(x, y, z) \in C^{(1,1,1)}$. Then, the directional derivative of f at point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of unit vector $\widehat{\mathbf{v}} \in \mathbb{R}^{3}$ is:

$$
D_{\mathbf{v}} f\left(x_{0}, y_{0}, z_{0}\right)=\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot \widehat{\mathbf{v}}
$$

REMARK: Directional Derivatives are generalizations of $1^{s t}$-order partials:
$D_{\mathbf{i}} f(x, y, z)=\nabla f \cdot \hat{\mathbf{i}}=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \cdot\langle 1,0,0\rangle=\left(f_{x}\right)(1)+\left(f_{y}\right)(0)+\left(f_{z}\right)(0)=f_{x}=\frac{\partial f}{\partial x}$

Directional Derivatives

WEX 11-6-3: Let $f(x, y)=x^{2}-y^{2}$ and $\mathbf{u}=\langle 3,5\rangle$. Compute $D_{\mathbf{u}} f(1,2)$.
$1^{\text {st }}$ normalize $\mathbf{u}: \quad \widehat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{\langle 3,5\rangle}{\sqrt{3^{2}+5^{2}}}=\left\langle\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right\rangle$

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\langle 2 x,-2 y\rangle
$$

$$
D_{\mathbf{u}} f(1,2)=\nabla f(1,2) \cdot \widehat{\mathbf{u}}
$$

$$
=\langle 2(1),-2(2)\rangle \cdot \widehat{\mathbf{u}}
$$

$$
=\langle 2,-4\rangle \cdot\left\langle\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right\rangle
$$

$$
=(2)\left(\frac{3}{\sqrt{34}}\right)+(-4)\left(\frac{5}{\sqrt{34}}\right)
$$

$$
=-\frac{14}{\sqrt{34}}
$$

Gradient (Steepest Ascent/Descent)

Proposition

Given surface $z=f(x, y)$ such that $f \in C^{(1,1)}$. Then:
(i) ∇f is normal to a level curve that contains point (x, y).
(ii) ∇f points in the (compass) direction of steepest ascent of f from (x, y).
(iii) $-\nabla f$ points in the direction of steepest descent of f from point (x, y).
(iv) $\|\nabla f\|$ is the maximum rate of change of f at point (x, y).

REMARK:

At point $(x, y), f$ increases most rapidly in the direction of ∇f.
At point $(x, y), f$ decreases most rapidly in the direction of $-\nabla f$.

PROOF:

(iv): Let unit vector $\widehat{\mathbf{v}} \in \mathbb{R}^{2}$ point in direction of steepest ascent.

Let $\theta \in[0, \pi]$ be the angle between vectors $\widehat{\mathbf{v}} \& \nabla f$.
$\Longrightarrow D_{\mathbf{v}} f=\nabla f \cdot \widehat{\mathbf{v}}=\|\nabla f\|\| \| \widehat{\mathbf{v}}\|\cos \theta=\| \nabla f\|(1) \cos \theta=\| \nabla f \| \cos \theta$
$\Longrightarrow \max \left(D_{\mathbf{v}} f\right)=\max _{\theta \in[0, \pi]}(\|\nabla f\| \cos \theta)=\|\nabla f\| \max _{\theta \in[0, \pi]}(\cos \theta)=\|\nabla f\|(1)=\|\nabla f\|$
(ii): $\max _{\theta \in[0, \pi]}(\cos \theta)=1 \Longrightarrow \theta=0 \Longrightarrow \widehat{\mathbf{v}} \& \nabla f$ point in same direction.

QED

Gradient (Steepest Ascent/Descent)

Given the contour plot (level curve plot) of a surface $z=f(x, y)$.

$$
f(x, y)=-x^{2}-y^{2}
$$

Gradient ∇f is normal to a level curve that contains point (x, y).
∇f points in the (compass) direction of steepest ascent of f from point (x, y).
$-\nabla f$ points in the direction of steepest descent of f from point (x, y).
$\|\nabla f\|$ is the maximum rate of change of f at point (x, y).

Gradient (Steepest Ascent)

Remember, given a surface $z=f(x, y)$:

∇f lies on the $x y$-plane \& points in compass direction of steepest ascent.

Gradient (Steepest Ascent/Descent)

WEX 11-6-4: Given $f(x, y)=3 \tan (\pi x y)$:
In what direction is f increasing most rapidly at point $P(2,3)$?
What is the maximum rate of increase?
In what direction is f decreasing most rapidly at point $P(2,3)$?

$$
\begin{aligned}
\nabla f=\left\langle f_{x}, f_{y}\right\rangle= & \left\langle 3 \pi y \sec ^{2}(\pi x y), 3 \pi x \sec ^{2}(\pi x y)\right\rangle \\
\Longrightarrow \nabla f(2,3) & =\left\langle 3 \pi(3) \sec ^{2}[\pi(2)(3)], 3 \pi(2) \sec ^{2}[\pi(2)(3)]\right\rangle \\
& =\left\langle 9 \pi \sec ^{2}(6 \pi), 6 \pi \sec ^{2}(6 \pi)\right\rangle \\
& =\left\langle 9 \pi \sec ^{2}(0), 6 \pi \sec ^{2}(0)\right\rangle \\
& =\langle 9 \pi, 6 \pi\rangle
\end{aligned}
$$

$\therefore f$ increases most rapidly at point P in the direction of $\langle 9 \pi, 6 \pi\rangle$
$\therefore f$ decreases most rapidly at point P in the direction of $\langle-9 \pi,-6 \pi\rangle$

$$
\|\nabla f(2,3)\|=\|\langle 9 \pi, 6 \pi\rangle\|=\sqrt{(9 \pi)^{2}+(6 \pi)^{2}}=\sqrt{117 \pi^{2}}=\pi \sqrt{117}
$$

\therefore The maximum rate of increase from point P is $\pi \sqrt{117} \approx 41.8$

PART II

PART II: TANGENT PLANES

Tangent Plane \& Normal Line to a Level Surface

Proposition

Given level surface $F(x, y, z)=k$, where $k \in \mathbb{R}$ and $F \in C^{(1,1,1)}$. Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the level surface s.t. $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \overrightarrow{\mathbf{0}}$. Then: The equation of the tangent plane \mathbb{T} to the level surface at point P_{0} is:

$$
\mathbb{T}: F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

The equation of the normal line ℓ to the level surface at point P_{0} is:

$$
\ell(t)=\left\langle x_{0}+F_{x}\left(x_{0}, y_{0}, z_{0}\right) t, y_{0}+F_{y}\left(x_{0}, y_{0}, z_{0}\right) t, z_{0}+F_{z}\left(x_{0}, y_{0}, z_{0}\right) t\right\rangle
$$

s.t. \equiv "such that"

Tangent Plane \& Normal Line to a Level Surface

WEX 11-6-5: Given $F(x, y, z)=x^{2} y^{3} z^{4}$:
(a) Find equation of tangent plane \mathbb{T} to level surface $F(x, y, z)=1$ at $(1,1,1)$.
$\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle 2 x y^{3} z^{4}, 3 x^{2} y^{2} z^{4}, 4 x^{2} y^{3} z^{3}\right\rangle \Longrightarrow \nabla F(1,1,1)=\langle 2,3,4\rangle$
Observe that $\nabla F(1,1,1)$ is a normal vector to the desired tangent plane \mathbb{T}. Hence:
$2 x+3 y+4 z+D=0 \Longrightarrow 2(1)+3(1)+4(1)+D=0 \Longrightarrow D=-9$
\therefore Equation of tangent plane is $\mathbb{T}: 2 x+3 y+4 z-9=0$
(b) Find equation of normal line ℓ to level surface $F(x, y, z)=1$ at point $(1,1,1)$.

The normal line $\ell \|$ gradient $\nabla F(1,1,1)=\langle 2,3,4\rangle$ and contains point $(1,1,1)$.
\therefore Equation of normal line to level surface is $\ell(t)=\langle 1+2 t, 1+3 t, 1+4 t\rangle$

Tangent Plane \& Normal Line to Surface $z=f(x, y)$

WEX 11-6-6: Given surface $S: z=-x^{2}-y^{2}$:
(a) Find equation of tangent plane \mathbb{T} to surface S at point $(1,1,-2)$.
$1^{\text {st }}$ write surface S as a level surface:
$z=-x^{2}-y^{2} \Longrightarrow F(x, y, z):=z+x^{2}+y^{2}=0$
$\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\langle 2 x, 2 y, 1\rangle \Longrightarrow \nabla F(1,1,-2)=\langle 2,2,1\rangle$
Observe that $\nabla F(1,1,-2)$ is a normal vector to the desired tangent plane \mathbb{T}. Hence:
$2 x+2 y+z+D=0 \Longrightarrow 2(1)+2(1)+(-2)+D=0 \Longrightarrow D=-2$
\therefore Equation of tangent plane is $\mathbb{T}: 2 x+2 y+z-2=0$
(b) Find equation of normal line ℓ to surface S at point $(1,1,-2)$.

The normal line $\ell \|$ gradient $\nabla F(1,1,-2)=\langle 2,2,1\rangle$ and contains pt $(1,1,-2)$.
\therefore Equation of normal line to level surface is $\ell(t)=\langle 1+2 t, 1+2 t,-2+t\rangle$

Tangent Plane $\mathbb{T} \&$ Normal Line ℓ to Surface S

Fin.

