Functions of Two Variables: Extrema

Josh Engwer

TTU

6 October 2014

Josh Engwer (TTU)

Functions of Two Variables: Extrema

PART I:

RELATIVE EXTREMA OF MULTIVARIABLE FUNCTIONS

Definition

A set $S \subseteq \mathbb{R}$ is **open** if *S* contains none of its boundary.

A set $S \subseteq \mathbb{R}$ is **closed** if *S* contains all of its boundary.

REMARK: \mathbb{R} and \emptyset (empty set) are **both open and closed**.

Definition

A set $S \subseteq \mathbb{R}^2$ is **open** if *S* contains none of its boundary.

A set $S \subseteq \mathbb{R}^2$ is **closed** if *S* contains all of its boundary.

REMARK: \mathbb{R}^2 and \emptyset (empty set) are **both open and closed**.

Open & Closed Sets in \mathbb{R}

WEX 11-7-1: Is interval (-2, 6) open, closed, or neither?

Determine the **boundary** of (-2, 6): Bdy $[(-2, 6)] = \{-2, 6\}$ Observe that $-2 \notin (-2, 6)$ and $6 \notin (-2, 6) \implies \{-2, 6\} \notin (-2, 6)$ \therefore The interval contains **none** of its boundary $\implies (-2, 6)$ is open

WEX 11-7-2: Is interval [4,9] open, closed, or neither?

Determine the **boundary** of [4,9]: $Bdy[[4,9]] = \{4,9\}$ Observe that $4 \in [4,9]$ and $9 \in [4,9] \implies \{4,9\} \subseteq [4,9]$

 \therefore The interval contains **all** of its boundary \implies [4,9] is closed

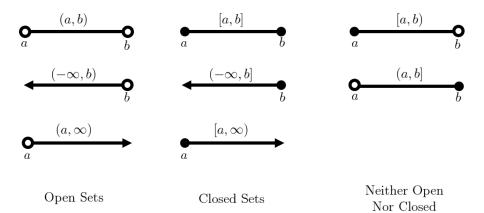
WEX 11-7-3: Is interval [5,7) open, closed, or neither?

Determine the **boundary** of [5,7): Bdy $[[5,7)] = \{5,7\}$ Observe that $5 \in [5,7)$ and $7 \notin [5,7)$

... The interval contains only part of its boundary

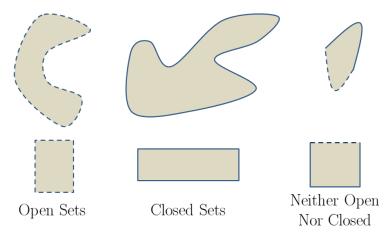
 \implies [5,7) is neither open nor closed

Open & Closed Sets in ${\mathbb R}$



Hollow circle(s) on the boundary indicate they are **not** part of the set.

Open & Closed Sets in \mathbb{R}^2



Dashed portions of the boundary indicate they are **not** part of the set.

Open & Closed Disks in \mathbb{R}^2

Open Disk centered at (x_0, y_0) with radius r Closed Disk centered at (x_0, y_0) with radius r

Definition

The **open disk** centered at (x_0, y_0) with radius r > 0 is defined by:

$$\mathbb{D}(x_0, y_0; r) := \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < r^2 \right\}$$

Definition

The **closed disk** centered at (x_0, y_0) with radius r > 0 is defined by:

$$\overline{\mathbb{D}}(x_0, y_0; r) := \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2 \right\}$$

Josh Engwer (TTU)

Functions of Two Variables: Extrema

Definition

Let f(x, y) be defined on an open set $S \subseteq \mathbb{R}^2$ such that $(x_0, y_0) \in S$. Then:

 (x_0, y_0) is a **relative maximum** if $f(x, y) \le f(x_0, y_0) \quad \forall (x, y) \in \mathbb{D}(x_0, y_0; r)$. (x_0, y_0) is a **relative minimum** if $f(x, y) \ge f(x_0, y_0) \quad \forall (x, y) \in \mathbb{D}(x_0, y_0; r)$. (x_0, y_0) is a **saddle point** if open disk $\mathbb{D}(x_0, y_0; r)$ contains points s.t. $f(x, y) > f(x_0, y_0)$ as well as points s.t. $f(x, y) < f(x_0, y_0)$.

 $\forall \equiv$ "for all" or "for every" or "for each"

Definition

A relative extremum is either a relative max or a relative min.

Unfortunately, these "first principles" definitions of relative extrema & saddle points are often too tedious to use.

What follows are simpler definitions using partial derivatives.

Recall from Calculus I:

Definition

Let f(x) be defined on an open set $S \subseteq \mathbb{R}$ such that $x_0 \in S$. Then x_0 is a **critical number** of f if either one of the following is true:

(i) $f'(x_0) = 0$ (ii) $f'(x_0)$ DNE

Here's the corresponding terminology for a function of two variables:

Definition

Let f(x, y) be defined on an open set $S \subseteq \mathbb{R}^2$ such that $(x_0, y_0) \in S$. Then (x_0, y_0) is a **critical point (CP)** of *f* is either one of the following is true:

(i)
$$f_x(x_0, y_0) = 0$$
 and $f_y(x_0, y_0) = 0$

(ii) At least one of $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ DNE

$DNE \equiv "Does Not Exist"$

Function of One Variable (2nd-Derivative Test)

Recall from Calculus I the 2nd-Derivative Test:

$$(x_0, f(x_0))$$

Relative Min at x_0
$$f'(x_0) = 0$$

$$f''(x_0) > 0$$

 $(x_0, f(x_0))$

Relative Max at x_0 $f'(x_0) = 0$ $f''(x_0) < 0$

 2^{nd} -Derivative Test is inconclusive if $f''(x_0) = 0$. Further analysis is necessary to determine the nature of f at x_0 . Build & interpret the **slope & concavity tables**.

Function of Two Variables (Mixed 2nd-Order Partials)

Theorem

(Sufficient Condition for Equality of Mixed Partials) Let $f(x, y) \in C^{(2,2)}$.

Then $f_{xy} = f_{yx}$

PROOF: Take Advanced Calculus.

Examples of functions which are $C^{(2,2)}$ everywhere:

• Polynomials, Sines, Cosines, Exponentials, ArcTangents, ArcCotangents

REMARK: The arguments must be defined everywhere!

e.g. $\sin(xy) \in C^{(2,2)}(\mathbb{R}^2)$ and $e^{x^2y^5} \in C^{(2,2)}(\mathbb{R}^2)$ but $\sin(\sqrt{xy}) \notin C^{(2,2)}(\mathbb{R}^2)$ and $e^{1/xy} \notin C^{(2,2)}(\mathbb{R}^2)$

<u>WARNING</u>: Some functions are defined everywhere, but not $C^{(2,2)}(\mathbb{R}^2)$:

- Odd roots: $\sqrt[3]{xy}, \sqrt[5]{xy}, \dots$
- Absolute values: |xy|, |x+y|, ...

Function of Two Variables (2nd-Order Partials Test)

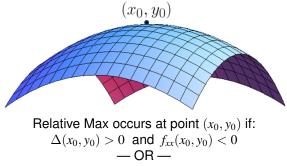
Theorem

Let $f(x, y) \in C^{(2,2)}(\mathbb{D}(x_0, y_0; r))$ s.t. f has a critical point at (x_0, y_0) . Form the **discriminant** of f: $\Delta(x, y) := det \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = f_{xx}f_{yy} - (f_{xy})^2$ Then: (x_0, y_0) is a relative max (AKA local max) if $\left(\Delta(x_0, y_0) > 0 \text{ and } f_{xx}(x_0, y_0) < 0\right) \text{ OR } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{yy}(x_0, y_0) < 0\right)$ (x_0, y_0) is a relative min (AKA local min) if $\left(\Delta(x_0, y_0) > 0 \text{ and } f_{xx}(x_0, y_0) > 0\right) \text{ OR } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{yy}(x_0, y_0) > 0\right)$ (x_0, y_0) is a saddle point if $\Delta(x_0, y_0) < 0$ The test is **inconclusive** if $\Delta(x_0, y_0) = 0$.

<u>PROOF:</u> Requires use of **Taylor Series in Two Variables**, which is covered in **Advanced Calculus** and **Numerical Analysis**.

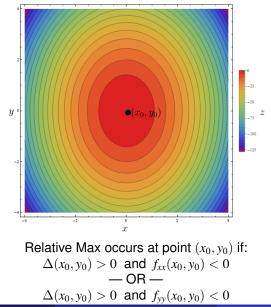
Josh Engwer (TTU)

2nd-Order Partials Test (Relative Max)



 $\Delta(x_0, y_0) > 0$ and $f_{yy}(x_0, y_0) < 0$

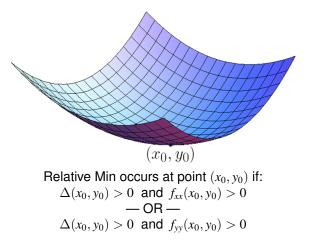
2nd-Order Partials Test (Relative Max – Contour Plot)



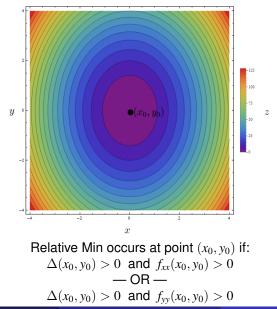
Josh Engwer (TTU)

Functions of Two Variables: Extrema

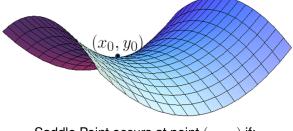
2nd-Order Partials Test (Relative Min)



2nd-Order Partials Test (Relative Min – Contour Plot)

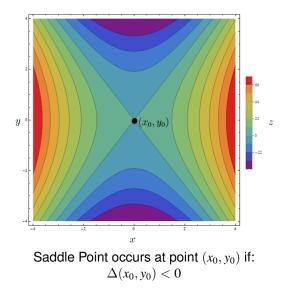


2nd-Order Partials Test (Saddle Point)



Saddle Point occurs at point (x_0, y_0) if: $\Delta(x_0, y_0) < 0$

2nd-Order Partials Test (Saddle Point – Contour Plot)



2nd-Order Partials Test (Inconclusive)

If $\Delta(x_0, y_0) = 0$, then the 2^{*nd*}-Order Partials Test is **inconclusive**. Further analysis is necessary to determine the nature of *f* at (x_0, y_0) .

Apply the "first principles" definitions of rel max, rel min, and saddle point.

2nd-Order Partials Test (Example)

WEX 11-7-4: Let $f(x, y) = x^2 - xy - y^3$. Find & classify all CP's of f.

$$\begin{cases} f_x = 2x - y \stackrel{set}{=} 0 \\ f_y = -x - 3y^2 \stackrel{set}{=} 0 \\ \Rightarrow x + 3(2x)^2 = 0 \\ \Rightarrow x + 3(2x)^2 = 0 \\ \Rightarrow x + 12x^2 = 0 \\ \Rightarrow x + 12x^2 = 0 \\ \Rightarrow x(1 + 12x) = 0 \\ \Rightarrow (x = 0 \\ \Rightarrow y = 2(0) = 0) \\ \text{or} (x = -\frac{1}{12} \\ \Rightarrow y = 2(-\frac{1}{12}) = -\frac{1}{6}) \\ \therefore \text{ The critical points (CP's) of } f \text{ are } \boxed{(0,0), \left(-\frac{1}{12}, -\frac{1}{6}\right)}$$

$$f_{xx} = 2, \quad f_{yy} = -6y, \quad f_{xy} = -1$$

 $\Delta = f_{xx}f_{yy} - (f_{xy})^2 = (2)(-6y) - (-1)^2 = -12y - 1$

CP	(0,0)	$\left(-\frac{1}{12},-\frac{1}{6}\right)$
Δ	—	+
f_{xx}	DC	+
f_{yy}	DC	+
J _{yy} Type	Saddle Point	Relative Minimum

 $DC \equiv$ "Don't Care"

Josh Engwer (TTU)

PART II:

ABSOLUTE EXTREMA OF MULTIVARIABLE FUNCTIONS

Josh Engwer (TTU)

Functions of Two Variables: Extrema

Definition

A set $S \subset \mathbb{R}$ is **bounded** if *S* is contained in an open interval.

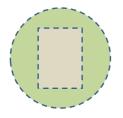
(Here,
$$-\infty < a < b < \infty$$
)

•
$$(a,b) \subset (a-1,b+1) \implies (a,b)$$
 is open & bounded

•
$$[a,b] \subset (a-1,b+1) \implies [a,b]$$
 is closed & bounded

• $\mathbb{R}, (-\infty, b), (-\infty, b], (a, \infty), [a, \infty)$ are all unbounded

Bounded Sets in \mathbb{R}^2



Open & Bounded

Closed & Bounded

Definition

A set $S \subset \mathbb{R}^2$ is **bounded** if *S* is contained in an open disk.

REMARK: \mathbb{R}^2 and each **quadrant** of the *xy*-plane are all **unbounded**

Josh Engwer (TTU)

Functions of Two Variables: Extrema

Absolute Extrema ("First Principles" Definitions)

Definition

Given function f(x, y):

 (x_M, y_M) is an **absolute maximum** of f if $f(x_M, y_M) \ge f(x, y) \quad \forall (x, y) \in \text{Dom}(f)$ (x_m, y_m) is an **absolute minimum** of f if $f(x_m, y_m) \le f(x, y) \quad \forall (x, y) \in \text{Dom}(f)$

If (x_M, y_M) is an abs max of f, then $f(x_M, y_M)$ is the **absolute max value** of f. If (x_m, y_m) is an abs min of f, then $f(x_m, y_m)$ is the **absolute min value** of f.

The extreme values of f are the abs max value & abs min value of f.

The absolute max is also known as the **global max**. Similarly for the abs min.

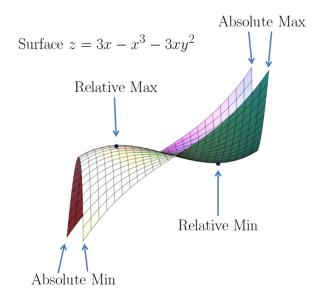
Theorem

(Extreme Value Theorem or E-V-T)

Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^2$ is closed & bounded. Then f attains extreme values over the set S.

PROOF: Take Advanced Calculus.

Absolute Extrema (Surface Plot)



Proposition

Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^2$ is closed & bounded. Then to find the absolute extrema of f over S, follow this procedure:

* Find all critical points (CP's) of f.

* Sketch & label all **boundary curves (BC's) & boundary points (BP's)** of *S*. A **boundary point** is the **intersection** of two boundary curves.

* Discard any critical points (CP's) that are <u>not</u> in S.

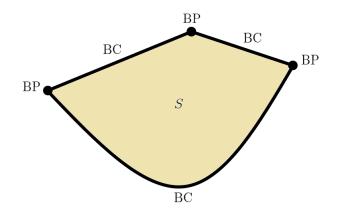
* Find all points on the **boundary** of *S* where absolute extrema can occur (called **boundary critical points (BCP's)**). To do this, find the absolute extrema on a function of <u>one variable</u> by plugging in one of the BC's of *S*. Repeat this for each BC.

* Build a **table** by computing f for each CP, BP, and BCP.

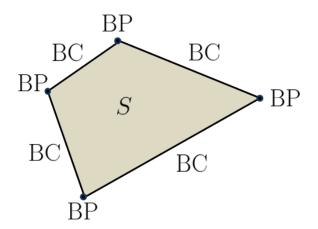
* The abs max value of f is the largest of all computed values in table.

* The abs min value of f is the smallest of all computed values in table.

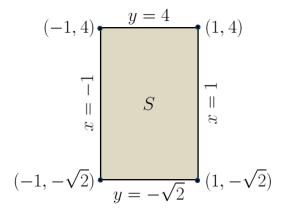
REMARK: Sometimes it's best to parameterize the BC.



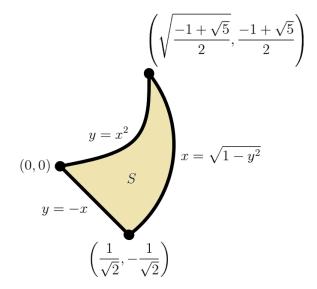
A boundary point (BP) is the intersection of two boundary curves (BC's).



A boundary point (BP) is the intersection of two boundary curves (BC's).



$$\begin{split} S \, &=\, \left\{ (x,y) \in \mathbb{R}^2 : |x| \leq 1, -\sqrt{2} \leq y \leq 4 \right\} \\ &=\, \left\{ (x,y) \in \mathbb{R}^2 : -1 \leq x \leq 1, -\sqrt{2} \leq y \leq 4 \right\} \end{split}$$



Fin.