Functions of Two Variables: Extrema

Calculus III

Josh Engwer

TTU

6 October 2014

PART I:

RELATIVE EXTREMA OF MULTIVARIABLE FUNCTIONS

Open \& Closed Sets in \mathbb{R} and \mathbb{R}^{2}

Definition

A set $S \subseteq \mathbb{R}$ is open if S contains none of its boundary.
A set $S \subseteq \mathbb{R}$ is closed if S contains all of its boundary.
REMARK: \mathbb{R} and \emptyset (empty set) are both open and closed.

Definition

A set $S \subseteq \mathbb{R}^{2}$ is open if S contains none of its boundary.
A set $S \subseteq \mathbb{R}^{2}$ is closed if S contains all of its boundary.
REMARK: \mathbb{R}^{2} and \emptyset (empty set) are both open and closed.

Open \& Closed Sets in \mathbb{R}

WEX 11-7-1: Is interval $(-2,6)$ open, closed, or neither?
Determine the boundary of $(-2,6)$: $\quad \operatorname{Bdy}[(-2,6)]=\{-2,6\}$
Observe that $-2 \notin(-2,6)$ and $6 \notin(-2,6) \Longrightarrow\{-2,6\} \nsubseteq(-2,6)$
\therefore The interval contains none of its boundary $\Longrightarrow(-2,6)$ is open
WEX 11-7-2: Is interval [4, 9] open, closed, or neither?
Determine the boundary of $[4,9]: \quad \operatorname{Bdy}[[4,9]]=\{4,9\}$
Observe that $4 \in[4,9]$ and $9 \in[4,9] \Longrightarrow\{4,9\} \subseteq[4,9]$
\therefore The interval contains all of its boundary $\Longrightarrow[4,9]$ is closed
WEX 11-7-3: Is interval [5,7) open, closed, or neither?
Determine the boundary of $[5,7): \quad \operatorname{Bdy}[[5,7)]=\{5,7\}$
Observe that $5 \in[5,7)$ and $7 \notin[5,7)$
\therefore The interval contains only part of its boundary
$\Longrightarrow[5,7)$ is neither open nor closed

Open \& Closed Sets in \mathbb{R}

Hollow circle(s) on the boundary indicate they are not part of the set.

Open \& Closed Sets in \mathbb{R}^{2}

Open Sets

Neither Open Nor Closed
Dashed portions of the boundary indicate they are not part of the set.

Open \& Closed Disks in \mathbb{R}^{2}

Open Disk
centered at $\left(x_{0}, y_{0}\right)$
with radius r

Closed Disk centered at $\left(x_{0}, y_{0}\right)$
with radius r

Definition

The open disk centered at $\left(x_{0}, y_{0}\right)$ with radius $r>0$ is defined by:

$$
\mathbb{D}\left(x_{0}, y_{0} ; r\right):=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<r^{2}\right\}
$$

Definition

The closed disk centered at $\left(x_{0}, y_{0}\right)$ with radius $r>0$ is defined by:

$$
\overline{\mathbb{D}}\left(x_{0}, y_{0} ; r\right):=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq r^{2}\right\}
$$

Relative Extrema \& Saddle Points (First Principles)

Definition

Let $f(x, y)$ be defined on an open set $S \subseteq \mathbb{R}^{2}$ such that $\left(x_{0}, y_{0}\right) \in S$. Then:
$\left(x_{0}, y_{0}\right)$ is a relative maximum if $f(x, y) \leq f\left(x_{0}, y_{0}\right) \quad \forall(x, y) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$.
$\left(x_{0}, y_{0}\right)$ is a relative minimum if $f(x, y) \geq f\left(x_{0}, y_{0}\right) \quad \forall(x, y) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$.
$\left(x_{0}, y_{0}\right)$ is a saddle point if open disk $\mathbb{D}\left(x_{0}, y_{0} ; r\right)$ contains points s.t.
$f(x, y)>f\left(x_{0}, y_{0}\right)$ as well as points s.t. $f(x, y)<f\left(x_{0}, y_{0}\right)$.
$\forall \equiv$ "for all" or "for every" or "for each"

Definition

A relative extremum is either a relative max or a relative min.
Unfortunately, these "first principles" definitions of relative extrema \& saddle points are often too tedious to use.
What follows are simpler definitions using partial derivatives.

Critical Points

Recall from Calculus I:

Definition

Let $f(x)$ be defined on an open set $S \subseteq \mathbb{R}$ such that $x_{0} \in S$.
Then x_{0} is a critical number of f if either one of the following is true:
(i) $f^{\prime}\left(x_{0}\right)=0$
(ii) $f^{\prime}\left(x_{0}\right) \mathrm{DNE}$

Here's the corresponding terminology for a function of two variables:

Definition

Let $f(x, y)$ be defined on an open set $S \subseteq \mathbb{R}^{2}$ such that $\left(x_{0}, y_{0}\right) \in S$.
Then $\left(x_{0}, y_{0}\right)$ is a critical point (CP) of f is either one of the following is true:
(i) $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$
(ii) At least one of $f_{x}\left(x_{0}, y_{0}\right)$ or $f_{y}\left(x_{0}, y_{0}\right)$ DNE

DNE \equiv "Does Not Exist"

Function of One Variable (2 $2^{\text {nd }}$-Derivative Test)

Recall from Calculus I the $2^{n d}$-Derivative Test:

Relative Min at x_{0}

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =0 \\
f^{\prime \prime}\left(x_{0}\right) & >0
\end{aligned}
$$

$$
\left(x_{0}, f\left(x_{0}\right)\right)
$$

Relative Max at x_{0}

$$
f^{\prime}\left(x_{0}\right)=0
$$

$$
f^{\prime \prime}\left(x_{0}\right)<0
$$

$2^{\text {nd }}$-Derivative Test is inconclusive if $f^{\prime \prime}\left(x_{0}\right)=0$.
Further analysis is necessary to determine the nature of f at x_{0}. Build \& interpret the slope \& concavity tables.

Function of Two Variables (Mixed 2 ${ }^{\text {nd }}$-Order Partials)

Theorem

(Sufficient Condition for Equality of Mixed Partials)
Let $f(x, y) \in C^{(2,2)}$.
Then $f_{x y}=f_{y x}$
PROOF: Take Advanced Calculus.
Examples of functions which are $C^{(2,2)}$ everywhere:

- Polynomials, Sines, Cosines, Exponentials, ArcTangents, ArcCotangents REMARK: The arguments must be defined everywhere!

$$
\begin{aligned}
& \text { e.g. } \sin (x y) \in C^{(2,2)}\left(\mathbb{R}^{2}\right) \text { and } e^{x^{2} y^{5}} \in C^{(2,2)}\left(\mathbb{R}^{2}\right) \\
& \text { but } \sin (\sqrt{x y}) \notin C^{(2,2)}\left(\mathbb{R}^{2}\right) \text { and } e^{1 / x y} \notin C^{(2,2)}\left(\mathbb{R}^{2}\right)
\end{aligned}
$$

WARNING: Some functions are defined everywhere, but not $C^{(2,2)}\left(\mathbb{R}^{2}\right)$:

- Odd roots: $\sqrt[3]{x y}, \sqrt[5]{x y}, \ldots$
- Absolute values: $|x y|,|x+y|, \ldots$

Function of Two Variables (2 $2^{n d}$-Order Partials Test)

Theorem

Let $f(x, y) \in C^{(2,2)}\left(\mathbb{D}\left(x_{0}, y_{0} ; r\right)\right)$ s.t. f has a critical point at $\left(x_{0}, y_{0}\right)$.
Form the discriminant of $f: \quad \Delta(x, y):=\operatorname{det}\left[\begin{array}{ll}f_{x x} & f_{x y} \\ f_{x y} & f_{y y}\end{array}\right]=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$ Then:
(x_{0}, y_{0}) is a relative max (AKA local max) if
$\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{x x}\left(x_{0}, y_{0}\right)<0\right)$ OR $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{y y}\left(x_{0}, y_{0}\right)<0\right)$
$\left(x_{0}, y_{0}\right)$ is a relative min (AKA local min) if
$\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{x x}\left(x_{0}, y_{0}\right)>0\right)$ OR $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{y y}\left(x_{0}, y_{0}\right)>0\right)$
$\left(x_{0}, y_{0}\right)$ is a saddle point if $\Delta\left(x_{0}, y_{0}\right)<0$
The test is inconclusive if $\Delta\left(x_{0}, y_{0}\right)=0$.
PROOF: Requires use of Taylor Series in Two Variables, which is covered in Advanced Calculus and Numerical Analysis.

$2^{\text {nd }}$-Order Partials Test (Relative Max)

Relative Max occurs at point $\left(x_{0}, y_{0}\right)$ if:

$$
\begin{aligned}
& \Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{x x}\left(x_{0}, y_{0}\right)<0 \\
& \Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{y y}\left(x_{0}, y_{0}\right)<0
\end{aligned}
$$

$2^{\text {nd }}$-Order Partials Test (Relative Max - Contour Plot)

Relative Max occurs at point $\left(x_{0}, y_{0}\right)$ if:

$$
\begin{gathered}
\Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{x x}\left(x_{0}, y_{0}\right)<0 \\
\Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{y y}\left(x_{0}, y_{0}\right)<0
\end{gathered}
$$

$2^{n d}$-Order Partials Test (Relative Min)

Relative Min occurs at point $\left(x_{0}, y_{0}\right)$ if:

$$
\begin{array}{r}
\Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{x x}\left(x_{0}, y_{0}\right)>0 \\
\Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{y y}\left(x_{0}, y_{0}\right)>0
\end{array}
$$

$2^{\text {nd }}$-Order Partials Test (Relative Min - Contour Plot)

Relative Min occurs at point $\left(x_{0}, y_{0}\right)$ if:

$$
\begin{aligned}
& \Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{x x}\left(x_{0}, y_{0}\right)>0 \\
& \Delta\left(x_{0}, y_{0}\right)>0 \text { and } f_{y y}\left(x_{0}, y_{0}\right)>0
\end{aligned}
$$

$2^{n d}$-Order Partials Test (Saddle Point)

Saddle Point occurs at point $\left(x_{0}, y_{0}\right)$ if:

$$
\Delta\left(x_{0}, y_{0}\right)<0
$$

$2^{n d}$-Order Partials Test (Saddle Point - Contour Plot)

Saddle Point occurs at point $\left(x_{0}, y_{0}\right)$ if:

$$
\Delta\left(x_{0}, y_{0}\right)<0
$$

$2^{n d}$-Order Partials Test (Inconclusive)

If $\Delta\left(x_{0}, y_{0}\right)=0$, then the $2^{\text {nd }}$-Order Partials Test is inconclusive.
Further analysis is necessary to determine the nature of f at $\left(x_{0}, y_{0}\right)$.
Apply the "first principles" definitions of rel max, rel min, and saddle point.

$2^{\text {nd }}$-Order Partials Test (Example)

WEX 11-7-4: Let $f(x, y)=x^{2}-x y-y^{3}$. Find \& classify all CP's of f.
$\left\{\begin{array}{llll}f_{x} & = & 2 x-y & \stackrel{\text { set }}{=} \\ f_{y} & = & -x-3 y^{2} & \stackrel{\text { set }}{=}\end{array} 0 \Rightarrow\left\{\begin{array}{rll}y & =2 x \\ x+3 y^{2} & = & 0\end{array}\right.\right.$
$\Longrightarrow x+3(2 x)^{2}=0 \Longrightarrow x+12 x^{2}=0 \Longrightarrow x(1+12 x)=0$
$\Longrightarrow(x=0 \Longrightarrow y=2(0)=0)$ or $\left(x=-\frac{1}{12} \Longrightarrow y=2\left(-\frac{1}{12}\right)=-\frac{1}{6}\right)$
\therefore The critical points (CP's) of f are $(0,0),\left(-\frac{1}{12},-\frac{1}{6}\right)$
$f_{x x}=2, \quad f_{y y}=-6 y, \quad f_{x y}=-1$
$\Delta=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=(2)(-6 y)-(-1)^{2}=-12 y-1$

CP	$(0,0)$	$\left(-\frac{1}{12},-\frac{1}{6}\right)$
Δ	-	+
$f_{x x}$	DC	+
$f_{y y}$	DC	+
Type	Saddle Point	Relative Minimum

DC \equiv "Don't Care"

PART II:

ABSOLUTE EXTREMA OF MULTIVARIABLE FUNCTIONS

Bounded Sets in \mathbb{R}

Definition

A set $S \subset \mathbb{R}$ is bounded if S is contained in an open interval.
(Here, $-\infty<a<b<\infty$)

- $(a, b) \subset(a-1, b+1) \Longrightarrow(a, b)$ is open \& bounded
- $[a, b] \subset(a-1, b+1) \Longrightarrow[a, b]$ is closed \& bounded
- $\mathbb{R},(-\infty, b),(-\infty, b],(a, \infty),[a, \infty)$ are all unbounded

Bounded Sets in \mathbb{R}^{2}

Open \& Bounded

Closed \& Bounded

Definition

A set $S \subset \mathbb{R}^{2}$ is bounded if S is contained in an open disk.
REMARK: \mathbb{R}^{2} and each quadrant of the $x y$-plane are all unbounded

Absolute Extrema ("First Principles" Definitions)

Definition

Given function $f(x, y)$:
$\left(x_{M}, y_{M}\right)$ is an absolute maximum of f if $f\left(x_{M}, y_{M}\right) \geq f(x, y) \quad \forall(x, y) \in \operatorname{Dom}(f)$ $\left(x_{m}, y_{m}\right)$ is an absolute minimum of f if $f\left(x_{m}, y_{m}\right) \leq f(x, y) \quad \forall(x, y) \in \operatorname{Dom}(f)$

If $\left(x_{M}, y_{M}\right)$ is an abs max of f, then $f\left(x_{M}, y_{M}\right)$ is the absolute max value of f. If $\left(x_{m}, y_{m}\right)$ is an abs min of f, then $f\left(x_{m}, y_{m}\right)$ is the absolute min value of f.

The extreme values of f are the abs max value \& abs min value of f.
The absolute max is also known as the global max. Similarly for the abs min.

Theorem

(Extreme Value Theorem or E-V-T)
Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^{2}$ is closed \& bounded.
Then f attains extreme values over the set S.
PROOF: Take Advanced Calculus.

Absolute Extrema (Surface Plot)

$$
\text { Surface } z=3 x-x^{3}-3 x y^{2}
$$

Absolute Extrema (Procedure)

Proposition

Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^{2}$ is closed \& bounded.
Then to find the absolute extrema of f over S, follow this procedure:

* Find all critical points (CP's) of f.
* Sketch \& label all boundary curves (BC's) \& boundary points (BP's) of S.

A boundary point is the intersection of two boundary curves.

* Discard any critical points (CP's) that are not in S.
* Find all points on the boundary of S where absolute extrema can occur (called boundary critical points (BCP's)).
To do this, find the absolute extrema on a function of one variable by plugging in one of the BC's of S. Repeat this for each BC.
* Build a table by computing f for each CP, BP, and BCP.
* The abs max value of f is the largest of all computed values in table.
* The abs min value of f is the smallest of all computed values in table.

REMARK: Sometimes it's best to parameterize the BC.

Boundary Curves (BC's) \& Boundary Points (BP’s)

A boundary point (BP) is the intersection of two boundary curves (BC's).

Boundary Curves (BC's) \& Boundary Points (BP’s)

A boundary point (BP) is the intersection of two boundary curves (BC's).

Boundary Curves (BC's) \& Boundary Points (BP’s)

$$
\begin{aligned}
S & =\left\{(x, y) \in \mathbb{R}^{2}:|x| \leq 1,-\sqrt{2} \leq y \leq 4\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}:-1 \leq x \leq 1,-\sqrt{2} \leq y \leq 4\right\}
\end{aligned}
$$

Boundary Curves (BC's) \& Boundary Points (BP’s)

$$
(0,0) \underbrace{y=x^{2}}_{x=\sqrt{1-y^{2}}}
$$

Fin.

