Constrained Optimization: Lagrange Multipliers

Calculus III

Josh Engwer

TTU
8 October 2014

Lagrange's Theorem

Theorem

(Lagrange's Theorem in Two Variables)
Let $f, g \in C^{(1,1)}$ s.t. $f\left(x_{0}, y_{0}\right)$ is an extreme value when restricted to the constraint $g(x, y)=k$, where $k \in \mathbb{R}$. If $\nabla g\left(x_{0}, y_{0}\right) \neq \overrightarrow{\mathbf{0}}$, then there exists a Lagrange multiplier $\lambda \in \mathbb{R}$ s.t.

$$
\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)
$$

Theorem

(Lagrange's Theorem in Three Variables)
Let $f, g \in C^{(1,1,1)}$ s.t. $f\left(x_{0}, y_{0}, z_{0}\right)$ is an extreme value when restricted to the constraint $g(x, y, z)=k$, where $k \in \mathbb{R}$.
If $\nabla g\left(x_{0}, y_{0}, z_{0}\right) \neq \overrightarrow{\mathbf{0}}$, then there exists a Lagrange multiplier $\lambda \in \mathbb{R}$ s.t.

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}, z_{0}\right)
$$

PROOF: See the textbook - it's somewhat lengthy.

Lagrange Multipliers (Procedure)

Proposition

(Method of Lagrange in Two Variables)
Let $f, g \in C^{(1,1)}$ s.t. $f(x, y)$ has an extremum subject to constraint $g(x, y)=k$, where $k \in \mathbb{R}$.
Then to find the extreme value(s) of f : Solve system: $\left\{\begin{array}{l}\nabla f=\lambda \nabla g \\ g(x, y)=k\end{array}\right.$
STEP 1: Solve for x, y : $\left\{\begin{array}{l}f_{x}=\lambda g_{x} \\ f_{y}=\lambda g_{y} \\ g(x, y)=k\end{array}\right.$
The solutions (x, y) are called constrained critical points (CCP's) of f.
STEP 2: Build a table computing f for each constrained critical point (CCP) If there's only one CCP, pick any other (simple) point on the constraint to compare with.
STEP 3: Compare values in the table to determine the extreme value(s) of f.

Lagrange Multipliers (Procedure)

Proposition

(Method of Lagrange in Three Variables)
Let $f, g \in C^{(1,1,1)}$ s.t. $f(x, y, z)$ has an extremum subject to constraint $g(x, y, z)=k$, where $k \in \mathbb{R}$.
Then to find the extreme value(s) of f : Solve system: $\left\{\begin{array}{l}\nabla f=\lambda \nabla g \\ g(x, y, z)=k\end{array}\right.$
STEP 1: Solve for $x, y, z:\left\{\begin{array}{l}f_{x}=\lambda g_{x} \\ f_{y}=\lambda g_{y} \\ f_{z}=\lambda g_{z} \\ g(x, y, z)=k\end{array}\right.$
The solutions (x, y, z) are called constrained critical points (CCP's) of f.
STEP 2: Build a table computing f for each constrained critical point (CCP) If there's only one CCP, pick any other (simple) point on the constraint to compare with.
STEP 3: Compare values in the table to determine the extreme value(s) of f.

Lagrange Multipliers (Example)

WEX 11-8-1: Find the extreme values of $f(x, y)=x y$ s.t. constraint $x^{2}+y^{2}=1$. Let $g(x, y)=x^{2}+y^{2}$. Then, $\nabla f=\langle y, x\rangle \quad$ and $\quad \nabla g=\langle 2 x, 2 y\rangle$
Solve
nonlinear
system $\left\{\begin{array}{l}\nabla f=\lambda \nabla g \\ g(x, y)=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}f_{x}=\lambda g_{x} \\ f_{y}=\lambda g_{y} \\ g(x, y)=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}y=2 x \lambda \\ x=2 y \lambda \\ x^{2}+y^{2}=1\end{array}\right.\right.\right.$
Observe that the nonlinear system forces $x \neq 0$ and $y \neq 0 \Longrightarrow \lambda \neq 0$
$\left\{\begin{array}{l}y=2 x \lambda \\ x=2 y \lambda\end{array} \Longrightarrow\right.$ (Divide top eqn by bottom eqn) $\Longrightarrow \frac{y}{x}=\frac{x}{y} \Longrightarrow x^{2}=y^{2}$
Then, $x^{2}+y^{2}=1 \Longrightarrow x^{2}+x^{2}=1 \Longrightarrow 2 x^{2}=1 \Longrightarrow x= \pm \frac{1}{\sqrt{2}} \Longrightarrow y= \pm \frac{1}{\sqrt{2}}$
\therefore The CCP's of f are: $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Build table computing f at each CCP and then compare the values:

(x, y)	$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$f(x, y)$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
	Abs Max	Abs Min	Abs Min	Abs Max

s.t. \equiv "subject to"

Lagrange Multipliers (Geometric Interpretation)

Optimize $f(x, y)=x y$ subject to constraint $g(x, y):=x^{2}+y^{2}=1$ y

At an absolute min (red point) or absolute max (green point): $\nabla f=\lambda \nabla g \Longleftrightarrow$ the gradients of f and g are parallel and the curve $g(x, y)=1$ is tangent to a level curve of $f(x, y)$.

Lagrange Multipliers (Demo)

(DEMO) LAGRANGE MULTIPLIERS (Click below):

Lagrange Multipliers with Two Variables

$f(\mathrm{x}, \mathrm{y})=$	$x^{\wedge} y^{\wedge} 2$			
$\mathrm{g}(\mathrm{x}, \mathrm{y})=$				
x Min $=$	-5	xMax =	5	
ythin $=$	-5	ythax $=$		

Fin.

