Constrained Optimization: Lagrange Multipliers

Josh Engwer

TTU

8 October 2014

Josh Engwer (TTU)

Constrained Optimization: Lagrange Multipliers

8 October 2014 1 / 8

Lagrange's Theorem

Theorem

(Lagrange's Theorem in Two Variables) Let $f, g \in C^{(1,1)}$ s.t. $f(x_0, y_0)$ is an **extreme value** when restricted to the **constraint** g(x, y) = k, where $k \in \mathbb{R}$.

If $\nabla g(x_0, y_0) \neq \vec{0}$, then there exists a Lagrange multiplier $\lambda \in \mathbb{R}$ s.t.

 $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$

Theorem

(Lagrange's Theorem in Three Variables) Let $f, g \in C^{(1,1,1)}$ s.t. $f(x_0, y_0, z_0)$ is an **extreme value** when restricted to the **constraint** g(x, y, z) = k, where $k \in \mathbb{R}$.

If $\nabla g(x_0, y_0, z_0) \neq \vec{0}$, then there exists a Lagrange multiplier $\lambda \in \mathbb{R}$ s.t.

 $\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$

PROOF: See the textbook - it's somewhat lengthy.

Proposition

(Method of Lagrange in Two Variables) Let $f, g \in C^{(1,1)}$ s.t. f(x, y) has an extremum subject to constraint g(x, y) = k, where $k \in \mathbb{R}$.

Then to find the extreme value(s) of f: Solve system: $\begin{cases} \nabla f = \lambda \nabla g \\ g(x, y) = k \end{cases}$

STEP 1: Solve for *x*, *y*:
$$\begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g(x, y) = k \end{cases}$$

The solutions (x, y) are called **constrained critical points (CCP's)** of f.

STEP 2: Build a table computing *f* for each constrained critical point (CCP) If there's only one CCP, pick any other (simple) point on the constraint to compare with.

STEP 3: Compare values in the table to determine the extreme value(s) of f.

Proposition

(Method of Lagrange in Three Variables) Let $f, g \in C^{(1,1,1)}$ s.t. f(x, y, z) has an extremum subject to constraint g(x, y, z) = k, where $k \in \mathbb{R}$.

Then to find the extreme value(s) of *f*: Solve system: $\begin{cases} \nabla f = \lambda \nabla g \\ g(x, y, z) = k \end{cases}$

STEP 1: Solve for
$$x, y, z$$
:
$$\begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ f_z = \lambda g_z \\ g(x, y, z) = z \end{cases}$$

The solutions (x, y, z) are called **constrained critical points (CCP's)** of f.

STEP 2: Build a table computing f for each constrained critical point (CCP) If there's only one CCP, pick any other (simple) point on the constraint to compare with.

STEP 3: Compare values in the table to determine the extreme value(s) of f.

Lagrange Multipliers (Example)

WEX 11-8-1: Find the extreme values of f(x, y) = xy s.t. constraint $x^2 + y^2 = 1$.

Let $g(x,y) = x^2 + y^2$. Then, $\nabla f = \langle y, x \rangle$ and $\nabla g = \langle 2x, 2y \rangle$
$\begin{array}{l} \text{Solve} \\ \text{nonlinear} \\ \text{system} \end{array} \left\{ \begin{array}{l} \nabla f = \lambda \nabla g \\ g(x,y) = 1 \end{array} \right. \iff \left\{ \begin{array}{l} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g(x,y) = 1 \end{array} \right. \iff \left\{ \begin{array}{l} y = 2x\lambda \\ x = 2y\lambda \\ x^2 + y^2 = 1 \end{array} \right. \end{array} \right.$
Observe that the nonlinear system forces $x \neq 0$ and $y \neq 0 \implies \lambda \neq 0$
$\begin{cases} y = 2x\lambda \\ x = 2y\lambda \end{cases} \implies \left(\text{Divide top eqn by bottom eqn} \right) \implies \frac{y}{x} = \frac{x}{y} \implies x^2 = y^2 \end{cases}$
Then, $x^2 + y^2 = 1 \implies x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x = \pm \frac{1}{\sqrt{2}} \implies y = \pm \frac{1}{\sqrt{2}}$
$\therefore \text{ The CCP's of } f \text{ are: } \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Build table computing f at each CCP and then compare the values:
$(x,y) = \left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) = \left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right) = \left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) = \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$

	Abs Max	Abs Min	Abs Min	Abs Max
f(x, y)	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
(x, y)	$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$	$\left(-\overline{\sqrt{2}}, \overline{\sqrt{2}}\right)$	$\left(\overline{\sqrt{2}}, -\overline{\sqrt{2}}\right)$	$\left(\overline{\sqrt{2}}, \overline{\sqrt{2}}\right)$

s.t. \equiv "subject to"

Lagrange Multipliers (Geometric Interpretation)

At an absolute min (**red point**) or absolute max (**green point**): $\nabla f = \lambda \nabla g \iff$ the gradients of *f* and *g* are **parallel** and the curve g(x, y) = 1 is **tangent** to a level curve of f(x, y).

Josh Engwer (TTU)

Constrained Optimization: Lagrange Multipliers

8 October 2014 6 / 8

Lagrange Multipliers (Demo)

(DEMO) LAGRANGE MULTIPLIERS (Click below):

Fin.