Double Integrals: Rectangular Coordinates

Calculus III

Josh Engwer

TTU

13 October 2014

PART I: SETUP \& COMPUTATION OF DOUBLE INTEGRALS

Indefinite Integral Rules (from Calculus I)

Here, $C \in \mathbb{R}$ is called the constant of integration. Also, $k \in \mathbb{R}$.
Zero Rule:

$$
\begin{aligned}
& \int 0 d x=C \\
& \int k d x=k x+C
\end{aligned}
$$

Constant Rule:
Constant Multiple Rule: $\int k f(x) d x=k \int f(x) d x$
Sum/Diff Rule:

$$
\begin{aligned}
& \int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad(\text { provided } n \in \mathbb{R} \backslash\{-1\}) \\
& \int e^{x} d x=e^{x}+C \\
& \int a^{x} d x=\frac{a^{x}}{\ln a}+C \quad\left(\text { provided } a \in \mathbb{R}_{+} \backslash\{1\}\right) \\
& \int \frac{1}{x} d x=\ln |x|+C
\end{aligned}
$$

Power Rule:

Indefinite Integral Rules (from Calculus I)

Here, $C \in \mathbb{R}$ is called the constant of integration.

- $\int \sin x d x=-\cos x+C$
- $\int \cos x d x=\sin x+C$
- $\int \sec ^{2} x d x=\tan x+C$
- $\int \sec x \tan x d x=\sec x+C$
- $\int \csc ^{2} x d x=-\cot x+C$
- $\int \csc x \cot x d x=-\csc x+C$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C$
- $\int \frac{1}{1+x^{2}} d x=\arctan x+C$
- $\int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\operatorname{arcsec} x+C$

Change of Variables (u-Substitution)

WORKED EXAMPLE: Evaluate $\int x e^{x^{2}} d x$.
CV: Let $u=x^{2}$, then $d u=2 x d x \Longrightarrow x d x=\frac{1}{2} d u$

$$
\Longrightarrow \int x e^{x^{2}} d x \stackrel{C V}{=} \int e^{u}\left(\frac{1}{2} d u\right)=\frac{1}{2} e^{u}+C \stackrel{C V}{=} \frac{1}{2} e^{x^{2}}+C
$$

WORKED EXAMPLE: Evaluate $\int_{-2}^{3} x e^{x^{2}} d x$.
CV: Let $u=x^{2}$, then $d u=2 x d x \Longrightarrow x d x=\frac{1}{2} d u$ and $u(-2)=(-2)^{2}=4$ and $u(3)=(3)^{2}=9$
$\Longrightarrow \int_{-2}^{3} x e^{x^{2}} d x \stackrel{C V}{=} \int_{4}^{9} e^{u}\left(\frac{1}{2} d u\right)=\left[\frac{1}{2} e^{u}\right]_{u=4}^{u=9} \stackrel{F T C}{=} \frac{1}{2}\left(e^{9}-e^{4}\right)$

Advanced Integration Techniques (from Calculus II)

- Integration by Parts (IBP)

$$
\int x e^{x} d x \stackrel{I B P}{=} x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
$$

- Partial Fraction Decomposition (PFD)

$$
\int \frac{1}{x(x+2)} d x \stackrel{P F D}{=} \frac{1}{2} \int \frac{1}{x} d x-\frac{1}{2} \int \frac{1}{x+2} d x=\frac{1}{2} \ln |x|-\frac{1}{2} \ln |x+2|+C
$$

- Trig Integrals

$$
\begin{aligned}
& \int \sin ^{6} x \cos ^{5} x d x, \int \cos ^{4} \omega d \omega, \int \tan ^{3} t d t, \int \tan ^{4} x \sec ^{6} x d x \\
& \int \sin (13 x) \cos (7 x) d x, \int \cos (-13 \theta) \cos (7 \theta) d \theta, \int \sin (13 t) \sin (-7 t) d t, \ldots
\end{aligned}
$$

- Trig Substitution

$$
\begin{aligned}
& \int \frac{1}{\sqrt{1-x^{2}}} d x, \int x^{3} \sqrt{1-x^{2}} d x, \int \sqrt{1-x^{2}} d x, \int \frac{x^{3}}{\sqrt{4-x^{2}}} d x, \\
& \int \frac{1}{x^{2} \sqrt{4-x^{2}}} d x, \int \frac{\sqrt{4-x^{2}}}{x^{2}} d x, \int \frac{1}{\sqrt{2 x^{2}-8 x+6}} d x, \ldots
\end{aligned}
$$

Integration by Parts (Purpose)

Here, assume that u, v are functions of $x: \quad u \equiv u(x), \quad v \equiv v(x)$

But the question is: How to choose function u \& differential $d v$???

IBP: Choosing the right function u (LIPTE Heuristic)

LIPTE Heuristic:

Whichever function type comes first in the following list choose as u :

Letter	Function Type	Example Functions
\mathbf{L}	Logarithms	$\ln x, \log y, \log g_{8} t, \ldots$
\mathbf{I}	Inverse Trig	$\arcsin x, \arctan y, \operatorname{arcsec} t, \ldots$
\mathbf{P}	Polynomials	$x, y^{2}, 5 t^{3}, \ldots$
\mathbf{T}	Trig Functions	$\sin x, \tan \theta, \sec \omega, \ldots$
\mathbf{E}	Exponentials	$e^{x}, 2^{y},\left(\frac{1}{3}\right)^{t},(-4)^{x}, \ldots$

There's no \mathbf{R} in LIPTE, so rational fens \& roots are disqualified to be u.
Once u is chosen, the remainder of the integrand must be $d v$.

If integrand involves only rational fens and/or roots, IBP is no good:
$\int \frac{d x}{(x-1)(x+7)}, \int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}, \int \frac{1+\sqrt{x}}{x^{2}+1} d x$, etc...

Nonelementary Integrals

Definition

A nonelementary integral is an integral whose antiderivative cannot be expressed in a finite closed form.

In other words, the antiderivative is an infinite series.
Here's a small list of nonelementary integrals (there are many, many more):

$$
\begin{array}{lll}
\int e^{x^{2}} d x & \int \frac{e^{x}}{x} d x & \int \sqrt{x} e^{-x} d x \\
\int \sin \left(x^{2}\right) d x & \int \cos \left(e^{x}\right) d x & \int e^{\cos x} d x \\
\int \sqrt{1+x^{4}} d x & \int \ln (\ln x) d x & \int \frac{x}{e^{x}-1} d x \\
\int \frac{1}{\ln x} d x & \int \frac{\sin x}{x} d x & \int \sin (\sin x) d x \\
\int x^{x} d x & \int \frac{1}{x^{x}} d x & \int \arctan (\ln x) d x
\end{array}
$$

REMARK: Here in Calculus III, avoid nonelementary integrals at all costs!

Connectedness \& Regions in \mathbb{R}^{2}

Definition

A simply connected set in \mathbb{R}^{2} is a connected set with no holes or cuts. A region is a simply connected set in \mathbb{R}^{2}.

(Single) Integrals (Definition \& Interpretation)

Definition

(Riemann Sum Definition of an Integral)
Let $f \in C[a, b]$ where $[a, b]$ is a closed interval s.t. $-\infty<a<b<\infty$. Then:

$$
\int_{a}^{b} f(x) d x:=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta x
$$

Proposition

(The Integral as an Area)
Let $f \in C[a, b]$ s.t. $f(x) \geq 0 \quad \forall x \in[a, b]$.
Let R be the region bounded by the curve $y=f(x)$, the x-axis, and the vertical lines $x=a$ \& $x=b$. Then

$$
\operatorname{Area}(R)=\int_{a}^{b} f(x) d x
$$

Riemann Sum Definition of an Integral (Demo)

(DEMO) RIEMANN SUM DEFINITION OF AN INTEGRAL (Click below):

Ietangle heights meen \sim			
RIEMANM SUMS by with enhoncements by Josh Engwer (2013) [CC-BY-SA]			
subdivisions of a unit interval	2	integral of $\sin (3 x)+1$ from 1 to 5	3.92323
error	-0.0149645	Riemann sum	3.9382

Double Integrals (Definition)

Definition

(Riemann Sum Definition of a Double Integral)
Let $f(x, y) \in C(D)$ where $D \subset \mathbb{R}^{2}$ is a closed \& bounded region on the $x y$-plane. Then:

$$
\iint_{D} f d A \equiv \iint_{D} f(x, y) d A:=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A
$$

REMARK: Region D is also known as the region of integration.

Subdivision of closed \& bounded region D into N cells

Riemann Sum Definition of a Double Integral (Demo)

(DEMO) RIEMANN SUM DEFN OF A DOUBLE INTEGRAL (Click below):

Double Integrals (Geometric Interpretation)

Proposition

(The Double Integral as a Volume)
Let $D \subset \mathbb{R}^{2}$ be a closed \& bounded region on the xy-plane.
Let $f \in C(D)$ s.t. $f(x, y) \geq 0 \quad \forall(x, y) \in D$.
Let $E \subset \mathbb{R}^{3}$ be the solid in xyz-space bounded below by the xy-plane and bounded above by the surface $z=f(x, y)$. Then

$$
\text { Volume }(E)=\iint_{D} f d A
$$

Proposition

(The Double Integral as an Area)
Let $D \subset \mathbb{R}^{2}$ be a closed \& bounded region on the xy-plane. Then

$$
\operatorname{Area}(D)=\iint_{D} d A
$$

Double Integrals (Properties)

Let set D be a closed \& bounded region in \mathbb{R}^{2}.
Let functions $f(x, y) \& g(x, y)$ be defined on D.
Let $k \in \mathbb{R}$.
Constant Multiple Rule: $\iint_{D} k f d A=k \iint_{D} f d A$
Sum/Difference Rule: $\iint_{D}[f \pm g] d A=\iint_{D} f d A \pm \iint_{D} g d A$
Nonnegativity Rule: $f(x, y) \geq 0 \quad \forall(x, y) \in D \Longrightarrow \iint_{D} f d A \geq 0$
Dominance Rule: $f(x, y) \leq g(x, y) \forall(x, y) \in D \Longrightarrow \iint_{D} f d A \leq \iint_{D} g d A$

Double Integrals (Region Additivity Property)

Region Additivity Rule: $D=D_{1} \cup D_{2} \Longrightarrow \iint_{D} f d A=\iint_{D_{1}} f d A+\iint_{D_{2}} f d A$

Iterated Integrals (Definition)

Using the Riemann Sum Definition to compute $\iint_{D} f d A$ is too tedious \& hard! Instead write the double integral as an iterated integral:

$$
\iint_{D} f d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x
$$

OR

$$
\iint_{D} f d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y=\int_{c}^{d}\left[\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right] d y
$$

To compute an iterated integral, compute the "inner integral" first, holding the other variable constant, then compute the "outer integral."
Notice that the bounds of the "inner integral" may be functions of one variable, but the bounds of the "outer integral" are always constants.
The advantage of using iterated integrals is that all the integration rules \& techniques from Calculus I \& II are available.

Iterated Integrals (Examples)

WEX 12-2-1: Evaluate $I=\int_{0}^{1} \int_{2}^{4} x y^{2} d x d y$
$I=\int_{0}^{1}\left[\int_{2}^{4} x y^{2} d x\right] d y=($ Treat y as constant $)=\int_{0}^{1}\left[\frac{1}{2} x^{2} y^{2}\right]_{x=2}^{x=4} d y$
$\stackrel{F T C}{=} \int_{0}^{1}\left[\frac{1}{2}(4)^{2} y^{2}-\frac{1}{2}(2)^{2} y^{2}\right] d y=\int_{0}^{1} 6 y^{2} d y=\left[2 y^{3}\right]_{y=0}^{y=1} \stackrel{F T C}{=} 2(1)^{3}-2(0)^{3}=2$
WEX 12-2-2: Compute $I=\int_{0}^{1} \int_{x^{2}}^{x^{3}} 3 x y^{2} d y d x$
$I=\int_{0}^{1}\left[\int_{x^{2}}^{x^{3}} 3 x y^{2} d y\right] d x=($ Treat x as constant $)=\int_{0}^{1}\left[x y^{3}\right]_{y=x^{2}}^{y=x^{3}} d x$
$\stackrel{F T C}{=} \int_{0}^{1}\left[x\left(x^{3}\right)^{3}-x\left(x^{2}\right)^{3}\right] d x=\int_{0}^{1}\left(x^{10}-x^{7}\right) d x=\left[\frac{1}{11} x^{11}-\frac{1}{8} x^{8}\right]_{x=0}^{x=1}=-\frac{3}{88}$

Boundary Curves (BC's) \& Boundary Points (BP’s)

A boundary point (BP) is the intersection of two boundary curves (BC's).

Boundary Curves (BC's) \& Boundary Points (BP’s)

A boundary point (BP) is the intersection of two boundary curves (BC's).

Boundary Curves (BC's) \& Boundary Points (BP’s)

$$
(0,0) \underbrace{y=x^{2}}_{x=\sqrt{1-y^{2}}} \sum_{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)}^{\left.\sqrt{\frac{-1+\sqrt{5}}{2}}, \frac{-1+\sqrt{5}}{2}\right)}
$$

Area of a Rectangular Region using Iterated Integrals

Rectangular Region

$$
\operatorname{Area}(R):=\iint_{R} d A=\int_{c}^{d} \int_{a}^{b} d x d y=\int_{a}^{b} \int_{c}^{d} d y d x
$$

Rectangles are the simplest regions to double-integrate over. (in fact, SST 12.1 exclusively covers double integrals over rectangles.)

Vertically Simple (V-Simple) Regions (Definition)

$\left(a, g_{2}(a)\right) \underbrace{\sim}_{\left(a, g_{1}(a)\right)}$

Vertically simple region

Definition

A region $D \subset \mathbb{R}^{2}$ is vertically-simple (V-Simple) if the region has only one top $B C$ \& only one bottom $B C$.

Vertically Simple (V-Simple) Regions (Definition)

$$
\begin{aligned}
& y=g_{2}(x) \\
& \left(a, g_{1}(a)\right) \underbrace{\sim}_{y=g_{1}(x)} \\
& \text { Vertically simple region }
\end{aligned}
$$

i.e., V-Simple regions can be swept vertically (with vertical lines [in blue]) where each vertical line intersects the same top BC \& same bottom BC.

Area of a V-Simple Region using Iterated Integrals

Area $(D):=\iint_{D} d A=\int_{\text {smallest } x \text {-value in } D}^{\text {largest } x \text {-value in } D} \int_{\text {bottom BC of } D}^{\text {top } \mathrm{BC} \text { of } D} d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} d y d x$

Area of a V-Simple Region using Iterated Integrals

Vertically simple region
Area $(D):=\iint_{D} d A=\int_{\text {smallest } x \text {-value in } D}^{\text {largest } x \text {-value in } D} \int_{\text {bottom } \mathrm{BC} \text { of } D}^{\text {top } \mathrm{BC} \text { of } D} d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} d y d x$

Area of a V-Simple Region using Iterated Integrals

$$
\text { Area }(D):=\iint_{D} d A=\int_{\text {smallest } x \text {-value in } D}^{\text {largest } x \text {-value in } D} \int_{\text {bottom } \mathrm{BC} \text { of } D}^{\text {top } \mathrm{BC} \text { of } D} d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} d y d x
$$

Horizontally Simple (H-Simple) Regions (Definition)

Horizontally simple region

Definition

A region $D \subset \mathbb{R}^{2}$ is horizontally-simple (H-Simple) if the region has only one left $B C$ \& only one right $B C$.

Horizontally Simple (H-Simple) Regions (Definition)

$$
\begin{aligned}
& x=h_{1}(y) h_{y=c}^{\text {2 }} \\
& \text { Horizontally simple region }
\end{aligned}
$$

i.e., H-Simple regions can be swept horizontally (w/ horizontal lines [in blue]) where each horizontal line intersects the same left BC \& same right BC.

Area of a H-Simple Region using Iterated Integrals

Horizontally simple region
$\operatorname{Area}(D):=\iint_{D} d A=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D} \int_{\text {left } \mathrm{BC} \text { of } D}^{\text {right } \mathrm{BC} \text { of } D} d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} d x d y$

Area of a H-Simple Region using Iterated Integrals

Horizontally simple region
Area $(D):=\iint_{D} d A=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D} \int_{\text {left } \mathrm{BC} \text { of } D}^{\text {right } \mathrm{BC} \text { of } D} d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} d x d y$

Area of a H-Simple Region using Iterated Integrals

Horizontally simple region
$\operatorname{Area}(D):=\iint_{D} d A=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D} \int_{\text {left } \mathrm{BC} \text { of } D}^{\text {right } \mathrm{BC} \text { of } D} d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} d x d y$

Area of a Region that's both V-Simple \& H-Simple

$$
\operatorname{Area}(D):=\iint_{D} d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} d y d x=\int_{c}^{d} \int_{g_{2}^{-1}(y)}^{g_{1}^{-1}(y)} d x d y
$$

REMARK: The shape of region D or the integrand $f(x, y)$ may cause:

- Both integration orders $(d x d y) \&(d y d x)$ to yield Calc I integrals
- $(d x d y) \rightarrow$ nonelementary integral; $(d y d x) \rightarrow$ elementary integral
- $(d x d y) \rightarrow$ Calc II integral; $(d y d x) \rightarrow$ Calc I integral; or vice-versa

Area of a Region that's neither V-Simple nor H-Simple

Neither V-Simple Nor H-Simple Region

$$
\operatorname{Area}(D):=\iint_{D} d A=\text { ????? }
$$

Area of a Region that's neither V-Simple nor H-Simple

Subdivide Region into V-Simple and H-Simple Regions

$$
D=D_{1} \cup D_{2} \cup D_{3} \cup D_{4}
$$

$$
\operatorname{Area}(D):=\iint_{D} d A=\iint_{D_{1}} d A+\iint_{D_{2}} d A+\iint_{D_{3}} d A+\iint_{D_{4}} d A
$$

Subdividing involves horizontal or vertical lines containing at least one BP.

Area of a Region that's neither V-Simple nor H-Simple

Subdivide Region into V-Simple and H-Simple Regions

$$
\begin{gathered}
D=D_{1} \cup D_{2} \cup D_{3} \cup D_{4} \\
\operatorname{Area}(D):=\iint_{D_{1}} d A=\iint_{D_{1}} d A+\iint_{D_{2}} d A+\iint_{D_{3}} d A+\iint_{D_{4}} d A
\end{gathered}
$$

Subdividing involves horizontal or vertical lines containing at least one BP.

Area of a Region that's neither V-Simple nor H-Simple

Subdivide Region into V-Simple and H-Simple Regions

$$
\begin{gathered}
D=D_{1} \cup D_{2} \\
\operatorname{Area}(D):=\iint_{D} d A=\iint_{D_{1}} d A+\iint_{D_{2} .} d A
\end{gathered}
$$

Subdividing involves horizontal or vertical lines containing at least one BP.

Setting up a Double Integral for Area or Volume

Proposition

Given closed \& bounded region $D \subset \mathbb{R}^{2}$ on the xy-plane and solid $E \subset \mathbb{R}^{3}$ bounded below by the xy-plane \& above by surface $z=f(x, y) \forall(x, y) \in D$:
0. $\operatorname{Area}(D)=\iint_{D} d A \quad \operatorname{Volume}(E)=\iint_{D} f(x, y) d A$

1. Sketch region D and label all BC's \& BP's.
2. Determine whether D is V-Simple, H-Simple, Both, or Neither.

If D is neither V-Simple nor H -Simple, subdivide region.
Subdividing involves horizontal or vertical lines containing at least one BP.
3. Write appropriate iterated integral. (see previous slides)
$\mathrm{BC} \equiv$ "Boundary Curve" $\quad \mathrm{BP} \equiv$ "Boundary Point"

PART II

PART II:
 INTERCHANGING THE ORDER OF INTERGATION OF DOUBLE INTEGRALS

Interchanging the Order of Integration (Example)

WEX 12-2-3: Let $I=\int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$. Reverse the order of integration.

Interchanging the Order of Integration (Example)

WEX 12-2-3: Let $I=\int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$. Reverse the order of integration.

First, sketch the region of integration, label BC's.

Interchanging the Order of Integration (Example)

WEX 12-2-3: Let $I=\int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$. Reverse the order of integration.

First, sketch the region of integration, label BC's \& BP's.

Interchanging the Order of Integration (Example)

WEX 12-2-3: Let $I=\int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$. Reverse the order of integration.

Remove clutter \& label the region of integration D.

Interchanging the Order of Integration (Example)

WEX 12-2-3: Let $I=\int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$. Reverse the order of integration.

Label each BC as a function of y.
Notice that region D is \mathbf{H}-Simple, so only one double integral is expected.

Interchanging the Order of Integration (Example)

WEX 12-2-3: Let $I=\int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$. Reverse the order of integration.

Interchanging the Order of Integration (Example)

WEX 12-2-3: Let $I=\int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$. Reverse the order of integration.

$$
\text { (-2,4) } y=4
$$

$$
\therefore \quad I=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D} \int_{\text {left BC of } D}^{\text {right BC of } D} f(x, y) d x d y=\int_{0}^{4} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) d x d y
$$

Fin.

