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PART I

PART I:

SKETCHING POLAR CURVES

(REVIEW FROM CALCULUS II)
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Convert: Rectangular Coord’s↔ Polar Coord’s

REMARK: r can be negative.
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Special Polar Curves
(

a 6= 0, b 6= 0, k 6= 0, n ∈ Z+

)
Z+ ≡ The set of all positive integers.

POLAR CURVE PROTOTYPE REMARK(S)
Rays thru Pole θ = k Always Graph!

Horizontal Lines (Off-Pole) r = a csc θ Always convert!
Vertical Lines (Off-Pole) r = a sec θ Always convert!
Circles Centered at Pole r = k Always Graph!
Circles Containing Pole r = a cos θ, r = a sin θ Always Graph!

Cardioids r = a± a cos θ, r = a± a sin θ Always Graph!
Limaçons r = b± a cos θ, r = b± a sin θ Always Graph!

Roses r = a cos(nθ), r = a sin(nθ) Always Graph!

The pole is the origin.

* See Section 6.3 of the textbook to see graphs of these types of curves.

r = a csc θ ⇐⇒ r =
a

sin θ
⇐⇒ r sin θ = a ⇐⇒ y = a

r = a sec θ ⇐⇒ r =
a

cos θ
⇐⇒ r cos θ = a ⇐⇒ x = a
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Special Polar Curves NOT to be Considered

The following special polar curves are too subtle or complicated to graph and
use with double integrals, and so will not be considered here:(

a 6= 0, b 6= 0, k 6= 0
)

Lemniscates: r2 = a2 cos(2θ), r2 = a2 sin(2θ)
Spirals: r = kθ, r = eθ, r = akθ, rθ = k

Strophoid: r = a cos(2θ) sec θ
Bifolium: r = a sin θ cos2 θ

Folium of Descartes: r =
3a sin θ cos θ

sin3 θ + cos3 θ

Ovals of Cassini: r4 + b4 − 2b2r2 cos(2θ) = k4
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Graphing Polar Curves (Procedure)
1 Graph r = f (θ) on the usual xy-plane where x = θ & y = r

(Rectangular Plot)
Use special angles for θ:

{
0, π2 , π,

3π
2 , 2π

}
If f (θ) has a trig fcn, augument these angles accordingly & solve for θ:

e.g. Suppose f (θ) = −5 cos θ.
Then, since the argument of cosine is just θ,
=⇒ θ ∈

{
0, π2 , π,

3π
2 , 2π

}
e.g. Suppose f (θ) = 7 sin(2θ).

As always, let θ ∈ [0, 2π].
Then, the argument of the sine fcn, 2θ ∈ [0, 4π].

=⇒ 2θ ∈
{

0, π2 , π,
3π
2 , 2π,

5π
2 , 3π,

7π
2 , 4π

}
=⇒ θ ∈

{
0, π4 ,

π
2 ,

3π
4 , π,

5π
4 ,

3π
2 ,

7π
4 , 2π

}
2 Use the rectangular plot of r = f (θ) to trace the polar graph of r = f (θ)

(Polar Plot)

IMPORTANT: Except for equations of lines, ”connect the dots” using smooth
curves, not line segments!
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Polar Plots

REMARKS:
Even though r can be negative, only label key positive r-values on each ray.
The pole is the origin, but it has no unique polar representation: (0, θ)
Polar coordinates are NOT unique:

(
2, 7π

4

)
=
(
2,−π

4

)
=
(
−2, 3π

4

)
=
(
−2,− 5π

4

)
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Polar Plots

If necessary, include more rays in the polar plot.
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Polar Plots (Example)

WEX 12-3-1: Plot the polar curve r = −2 sin θ.
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Polar Plots (Example)

WEX 12-3-1: Plot the polar curve r = −2 sin θ.

STEP 1: Identify the key θ-values.
The argument of the trig fcn should use ”easy angles”:

=⇒ θ ∈
{

0, π2 , π,
3π
2 , 2π

}
These are key values to label on the horizontal axis of rectangular plot.
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Polar Plots (Example)

WEX 12-3-1: Plot the polar curve r = −2 sin θ.

STEP 1: Identify the key θ-values.
The argument of the trig fcn should use ”easy angles”:

=⇒ θ ∈
{

0, π2 , π,
3π
2 , 2π

}
These are key values to label on the horizontal axis of rectangular plot.

STEP 2: Identify the key r-values.
Find the range of the curve: Rng

[
− 2 sin θ

]
= [−2, 2]

The key values are the curve’s max value, min value, & mid value:

Rng
[
− 2 sin θ

]
= [−2, 2] =⇒

{
Max Value = 2
Min Value = -2

=⇒ Mid Value :=
(Max Value) + (Min Value)

2
=

2 + (−2)

2
= 0

These are key values to label on the vertical axis of rectangular plot.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

STEP 3: Trace the rectangular plot of r = −2 sin θ
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

STEP 4: Trace the polar plot.

Josh Engwer (TTU) Double Integrals: Polar Coordinates 15 October 2014 13 / 72



Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Setup the axes for the polar plot.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Consider the red portion of the rectangular plot (i.e. θ ∈ [0, π/2]).
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Starting Point: θ = 0 =⇒ r = 0.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = 0, r = 0 =⇒ pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Ending Point: θ = π/2 =⇒ r = −2.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = π/2, r = −2 =⇒ March 2 units in opposite direction from θ = π/2.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: For θ ∈ (0, π/2) ⊆ QI, r < 0 and r departs from zero.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: Trace a smooth curve in QIII that departs from pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Consider the green portion of the rectangular plot (i.e. θ ∈ [π/2, π]).
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Starting Point: θ = π/2 =⇒ r = −2.

Josh Engwer (TTU) Double Integrals: Polar Coordinates 15 October 2014 23 / 72



Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = π/2, r = −2 =⇒ March 2 units in opposite direction from θ = π/2.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Ending Point: θ = π =⇒ r = 0.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = π, r = 0 =⇒ pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: For θ ∈ (π/2, π) = QII, r < 0 and r approaches zero.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: Trace a smooth curve in QIV that approaches pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

AND WE’RE DONE!
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Done? Already? But why?? What about θ ∈ [π, 2π]??
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Because continuing further would re-trace the same curve!
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

But let’s continue anyway to see why the same curve is re-traced.....
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Consider the blue portion of the rectangular plot (i.e. θ ∈ [π, 3π/2]).
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Starting Point: θ = π =⇒ r = 0.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = π, r = 0 =⇒ pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Ending Point: θ = 3π/2 =⇒ r = 2.

Josh Engwer (TTU) Double Integrals: Polar Coordinates 15 October 2014 36 / 72



Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = 3π/2, r = 2 =⇒ March 2 units in same direction as θ = 3π/2.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: For θ ∈ (π, 3π/2) ⊆ QIII, r > 0 and r departs from zero.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: Trace a smooth curve in QIII that departs from pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Consider the black portion of the rectangular plot (i.e. θ ∈ [3π/2, 2π]).
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Starting Point: θ = 3π/2 =⇒ r = 2.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = 3π/2, r = 2 =⇒ March 2 units in same direction as θ = 3π/2.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Ending Point: θ = 2π =⇒ r = 0.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

θ = 2π, r = 0 =⇒ pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: For θ ∈ (3π/2, 2π) ⊆ QIV, r > 0 and r approaches zero.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

In Between: Trace a smooth curve in QIV that approaches pole.
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Polar Plots (Example)
WEX 12-3-1: Plot the polar curve r = −2 sin θ.

Moral: NEVER RE-TRACE THE SAME POLAR CURVE!

Josh Engwer (TTU) Double Integrals: Polar Coordinates 15 October 2014 47 / 72



Intersection of Two Polar Curves

TASK: Find all intersection points of the polar curves r = f (θ) & r = g(θ).

Solving f (θ) = g(θ) finds some, but not necessarily all, intersection points.
In particular, intersections at the pole are nearly impossible to find
algebraically because the pole has no single representation in polar
coordinates that satisfies both r = f (θ) & r = g(θ).
Therefore, to find all intersection points, graph both curves!
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Intersection of Two Polar Curves (Example)

2 sin θ = 2 cos θ =⇒ cos θ(tan θ − 1) = 0 =⇒ cos θ = 0 or tan θ = 1
=⇒ θ ∈ {π/2, 3π/2} or θ ∈ {π/4, 5π/4}
Discard θ = π/2 & θ = 3π/2 since they’re extraneous solutions.
Both θ = π/4 and θ = 5π/4 yield the same intersection point B.
So solving algebraically did not yield the intersection point at the pole.
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PART II

PART II:

AREAS OF POLAR REGIONS
(i.e. AREAS OF REGIONS BOUNDED BY POLAR CURVES)
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Area of a Sector

Proposition
The area of a sector with radius r that sweeps an angle θ is:

Area of Sector(r, θ) =
1
2

r2θ

PROOF: Area of Circle(r) = πr2.
But a circle is just a sector that sweeps an angle of 2π radians.

=⇒ Area of Sector(r, θ) =
(
θ

2π

)[
Area of Circle(r)

]
=

(
θ

2π

)(
πr2
)

=
1
2

r2θ

QED
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Radially-Simple (r-Simple) Polar Regions (Definition)

Above, the inner BC is r = g1(θ) & the outer BC is r = g2(θ).
Notice, the inner BC & outer BC are both traced for θ ∈ [α, β].

Definition
A region D ⊂ R2 is radially-simple (r-Simple) if

D has one inner BC & one outer BC, both traced over the same θ-values.
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Radially-Simple (r-Simple) Polar Regions (Definition)

Above, the inner BC is r = g1(θ) & the outer BC is r = g2(θ).
Notice, the inner BC & outer BC are both traced for θ ∈ [α, β].

Definition
A region D ⊂ R2 is radially-simple (r-Simple) if

D has one inner BC & one outer BC, both traced over the same θ-values.
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Radially-Simple (r-Simple) Polar Regions (Definition)

Above, the inner BC is the pole (r = 0) & the outer BC is r = f (θ).
Notice, the outer BC is traced for θ ∈ [α, β].

Definition
A region D ⊂ R2 is radially-simple (r-Simple) if

D has the pole as the inner BC & only one outer BC.
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Radially-Simple (r-Simple) Polar Regions (Definition)

Above, the inner BC is the pole (r = 0) & the outer BC is r = f (θ).

i.e., r-Simple regions can be swept radially from the pole (with rays [in blue])
where each ray enters the same inner BC & exits the same outer BC.
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Quasi-Radially-Simple (Quasi-r-Simple) Polar Region

Above, the inner BC is r = g1(θ) & the outer BC is r = g2(θ).
Notice, inner BC is traced for θ ∈ [α, β] & outer BC is traced for θ ∈ [γ, δ].

Definition
A region D ⊂ R2 is quasi-radially-simple (Quasi-r-Simple) if

D has one inner BC & one outer BC, each traced over different θ-values.
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Region that’s neither r-Simple nor Quasi-r-Simple

How to handle a polar region that lacks (quasi-) radial simplicity???
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Region that’s neither r-Simple nor Quasi-r-Simple

Subdivide polar region radially from the pole through appropriate BP.
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Area of a Radially Simple (r-Simple) Polar Region

Proposition
Let D be a r-simple region as shown above. Then:

Area(D) =

∫ Largest θ-value in D

Smallest θ-value in D

∫ Outer BC of D

Pole
r dr dθ =

∫ β

α

∫ f (θ)

0
r dr dθ

Josh Engwer (TTU) Double Integrals: Polar Coordinates 15 October 2014 59 / 72



Area of a Radially Simple (r-Simple) Polar Region

Proposition
Let D be a r-simple region as shown above. Then:

Area(D) =

∫ Largest θ-value in D

Smallest θ-value in D

∫ Outer BC of D

Inner BC of D
r dr dθ =

∫ β

α

∫ g2(θ)

g1(θ)

r dr dθ

Josh Engwer (TTU) Double Integrals: Polar Coordinates 15 October 2014 60 / 72



Area of a Radially Simple (r-Simple) Polar Region

Proposition
Let D be a r-simple region as shown above. Then:

Area(D) =

∫ Largest θ-value in D

Smallest θ-value in D

∫ Outer BC of D

Inner BC of D
r dr dθ =

∫ β

α

∫ g2(θ)

g1(θ)

r dr dθ
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Area of a Quasi-r-Simple Polar Region

Proposition
Let D be a quasi-r-simple region as shown above. Then Area(D) =∫ Largest θ for Outer BC

Smallest θ for Outer BC

∫ Outer BC

Pole
r dr dθ −

∫ Largest θ for Inner BC

Smallest θ for Inner BC

∫ Inner BC

Pole
r dr dθ
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Area of a Quasi-r-Simple Polar Region

Proposition
Let D be a quasi-r-simple region as shown above. Then:

Area(D) =

∫ δ

γ

∫ g2(θ)

0
r dr dθ −

∫ β

α

∫ g1(θ)

0
r dr dθ
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Converting a Double Integral from Rectangular to
Polar Coordinates

Recall how to convert rectangular coord’s→ polar coord’s:
{

x = r cos θ
y = r sin θ

Proposition
Let f (x, y) ∈ C(D)
where D is either a r-simple or quasi-r-simple region (or can subdivided).
Then ∫∫

D
f (x, y) dA =

∫∫
D

f (r cos θ, r sin θ) r dr dθ
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NEVER SETUP DOUBLE INTEGRALS IN THE
ORDER r dθ dr!

For the purposes of this course:
NEVER, EVER, EVER, SETUP A DOUBLE INTEGRAL IN POLAR FORM

IN THE ORDER r dθ dr, SUCH AS
∫ ∫

f (r, θ) r dθ dr, .....

.....EVER!!!!!!!

Uh...Okay....Why Not??? Two reasons:
All non-ray polar curves are expressed as r = f (θ), not as θ = g(r).
Sweeping a region by angle first causes way too many subtleties to occur.
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Why
∫ ∫

r dr dθ instead of just
∫ ∫

dr dθ?? (Optional)

Subdivide region D into N polar rectangles.
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Why
∫ ∫

r dr dθ instead of just
∫ ∫

dr dθ?? (Optional)

Let (r∗k , θ
∗
k ) be the center point of the kth polar rectangle.
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Why
∫ ∫

r dr dθ instead of just
∫ ∫

dr dθ?? (Optional)
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Why
∫ ∫

r dr dθ instead of just
∫ ∫

dr dθ?? (Optional)
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Why
∫ ∫

r dr dθ instead of just
∫ ∫

dr dθ?? (Optional)
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Why
∫ ∫

r dr dθ instead of just
∫ ∫

dr dθ?? (Optional)

Area(D) :=

∫∫
D

dA = lim
N→∞

N∑
k=1

∆Ak = lim
N→∞

N∑
k=1

r∗k ∆r∆θ =

∫ β

α

∫ g2(θ)

g1(θ)

r dr dθ
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Fin

Fin.
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