Triple Integrals: Cylindrical \& Spherical Coordinates

Calculus III

Josh Engwer

TTU

27 October 2014

PART I:

SETUP OF TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

Cylindrical Coordinates

COORDINATE	INTERPRETATION	REMARK(S)
r	$\|r\| \equiv$ Distance from origin to point	$r \in \mathbb{R}$ r can be negative
θ	Angle swept CCW from positive x-axis	$\theta \in \mathbb{R}$
Often $\theta \in[0,2 \pi]$		
z	$\|z\| \equiv$ Distance from $x y$-plane to point	$z \in \mathbb{R}$
Josh Engwer (TTU)	Tiple Integrals: Cyindrical \& spherical Coordinate	27 October 2014
3/283		

Cylindrical Coordinates

Proposition

(Rectangular \rightarrow Cylindrical)

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \\
z=z
\end{gathered}
$$

Proposition

(Cylindrical \rightarrow Rectangular)

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\arctan \left(\frac{y}{x}\right) \\
z=z
\end{gathered}
$$

REMARK: The focus will be converting Rectangular \rightarrow Cylindrical (top box).

Surfaces with Simple Cylindrical Forms

(Circular) Cylinder
Rectangular Form: $x^{2}+y^{2}=k^{2}$
Cylindrical Form: $r=k$
$(k \in \mathbb{R})$

Surfaces with Simple Cylindrical Forms

Rectangular Form: $x^{2}+y^{2}=z^{2}$
Cylindrical Form: $r=z$

Surfaces with Simple Cylindrical Forms

Rectangular Form: $x^{2}+y^{2}=k z$ Cylindrical Form: $r^{2}=k z$
$(k \in \mathbb{R})$

Surfaces with Simple Cylindrical Forms

(Circular) Hyperboloid of 1 Sheet
Rectangular Form: $x^{2}+y^{2}-z^{2}=1$ Cylindrical Form: $r^{2}=z^{2}+1$

Surfaces with Simple Cylindrical Forms

(Circular) Hyperboloid of 2 Sheets
Rectangular Form: $x^{2}+y^{2}-z^{2}=-1$
Cylindrical Form: $r^{2}=z^{2}-1$

Triple Integrals in Cylindrical Coordinates

Proposition

(Triple Integral in Cylindrical Coordinates)
Let $f(x, y, z) \in C(E)$, where solid $E \subset \mathbb{R}^{3}$ is z-simple s.t. its proj. D is r-simple.

$$
\begin{aligned}
& \iiint_{E} f d V \stackrel{C Y L}{=} \\
& \quad \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D} \int_{\operatorname{Inner} B C \text { of } D}^{\text {Outer BC of } D} \int_{\text {Btm BS in cyl. form }}^{\text {Top BS in cyl. form }} f r d z d r d \theta \\
&= \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} \int_{f_{1}(r \cos \theta, r \sin \theta)}^{f_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
\end{aligned}
$$

If region D only has an outer BC , then the inner BC is the pole $(r=0)$. REMARK: Always integrate in the order $d z d r d \theta$.

PART II:

SETUP OF TRIPLE INTEGRALS IN SPHERICAL COORDINATES

Spherical Coordinates

COORDINATE	INTERPRETATION	REMARK(S)
ρ	Distance from origin to point	$\rho \geq 0$
θ	Angle swept CCW from positive x-axis	$\theta \in \mathbb{R}$
Often $\theta \in[0,2 \pi]$		
ϕ	Angle swept from positive z-axis	$\phi \in[0, \pi]$
$\rho \equiv$ "rho"	$\theta \equiv$ "theta"	$\phi \equiv$ "phi"
Josh Engwer (TTU)	Triple Integrals: cyilindical \& Spherical coordinate	27 october 2014

"The Sphere's Notational Curse"

Unfortunately, other books use different notations for spherical coordinates:

MATH	PHYSICS	GIS/CARTOGRAPHY	ASTRONOMY
(ρ, θ, ϕ)	(ρ, ϕ, θ)	(It's Complicated)	(It's Complicated)
(ρ, ϑ, ϕ)	(ρ, ϕ, ϑ)		
(ρ, θ, φ)	(ρ, φ, θ)		
$(\rho, \vartheta, \varphi)$	$(\rho, \varphi, \vartheta)$		
(r, θ, ϕ)	(r, ϕ, θ)		
(r, ϑ, ϕ)	(r, ϕ, ϑ)		
(r, θ, φ)	(r, φ, θ)		
(r, ϑ, φ)	(r, φ, ϑ)		

Notations in red are frowned upon by your instructor.....
The convention used going forward is (ρ, θ, ϕ).

Converting Rectangular \rightarrow Spherical (Derivation)

What are x, y, z in terms of ρ, ϕ, θ ???

Converting Rectangular \rightarrow Spherical (Derivation)

The legs of the right triangle shown are, by definition, r and z. However, the legs can also be written in terms of hypotenuse ρ and angle ϕ.

Converting Rectangular \rightarrow Spherical (Derivation)

Converting Rectangular \rightarrow Spherical (Derivation)

$$
\begin{aligned}
& z=\rho \cos \phi \\
& r=\rho \sin \phi
\end{aligned}
$$

Converting Rectangular \rightarrow Spherical (Derivation)

$$
\begin{aligned}
& z=\rho \cos \phi \\
& r=\rho \sin \phi
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& x=r \cos \theta=(\rho \sin \phi) \cos \theta \\
& y=r \sin \theta=(\rho \sin \phi) \sin \theta
\end{aligned}
$$

Converting Rectangular \rightarrow Spherical (Derivation)

$$
\begin{aligned}
& z=\rho \cos \phi \\
& r=\rho \sin \phi
\end{aligned} \Longrightarrow \begin{aligned}
& x=r \cos \theta=(\rho \sin \phi) \cos \theta \\
& y=r \sin \theta=(\rho \sin \phi) \sin \theta
\end{aligned} \Longrightarrow \begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& 7=0 \cos \phi
\end{aligned}
$$

Converting Rectangular \leftrightarrow Spherical

Proposition

(Rectangular \rightarrow Spherical)

$$
\begin{gathered}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{gathered}
$$

Proposition

(Spherical \rightarrow Rectangular)

$$
\begin{gathered}
\rho=\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan \theta=\frac{y}{x} \\
\phi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
\end{gathered}
$$

REMARK: The focus will be converting Rectangular \rightarrow Spherical (top box). REMARK: The angle ϕ is not to be confused with the empty set \emptyset.

Surfaces with Simple Spherical Forms

Rectangular Form: $x^{2}+y^{2}+z^{2}=k^{2}$ Spherical Form: $\rho=k$

$$
(k>0)
$$

Surfaces with Simple Spherical Forms

Half-Cone
Spherical Form: $\phi=k$

$$
\left(0<k<\frac{\pi}{2}\right)
$$

Surfaces with Simple Spherical Forms

Half-Cone
Spherical Form: $\phi=k$

$$
\left(\frac{\pi}{2}<k<\pi\right)
$$

Surfaces with Simple Spherical Forms

Rectangular Form: $z=0$
Spherical Form: $\phi=\frac{\pi}{2}$

Spherical Forms of Planes

WORKED EXAMPLE: Write the plane $z=4$ in spherical form.
$z=4 \Longrightarrow \rho \cos \phi=4 \Longrightarrow \rho=\frac{4}{\cos \phi} \Longrightarrow \rho=4 \sec \phi$
WORKED EXAMPLE: Write the plane $y=4$ in spherical form.
$y=4 \Longrightarrow \rho \sin \phi \sin \theta=4 \Longrightarrow \rho=\frac{4}{\sin \phi \sin \theta} \Longrightarrow \rho=4 \csc \phi \csc \theta$
WORKED EXAMPLE: Write the plane $x=4$ in spherical form.
$x=4 \Longrightarrow \rho \sin \phi \cos \theta=4 \Longrightarrow \rho=\frac{4}{\sin \phi \cos \theta} \Longrightarrow \rho=4 \csc \phi \sec \theta$
WORKED EXAMPLE: Write the plane $x+2 y+3 z=4$ in spherical form.
$x+2 y+3 z=4 \Longrightarrow(\rho \sin \phi \cos \theta)+2(\rho \sin \phi \sin \theta)+3(\rho \cos \phi)=4$
$\Longrightarrow \quad \rho=\frac{4}{\sin \phi \cos \theta+2 \sin \phi \sin \theta+3 \cos \phi}$

Spherical Forms of Cones

WORKED EXAMPLE: Write the half-cone $z=\sqrt{x^{2}+y^{2}}$ in spherical form.
$z=\sqrt{x^{2}+y^{2}} \Longrightarrow z \geq 0 \Longrightarrow \phi \in[0, \pi / 2]$
Apply conversion $\{x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi\}$ to the half-cone and simplify:

$$
\begin{aligned}
z & =\sqrt{x^{2}+y^{2}} \\
\rho \cos \phi & =\sqrt{(\rho \sin \phi \cos \theta)^{2}+(\rho \sin \phi \sin \theta)^{2}} \\
& =\sqrt{\rho^{2} \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} \\
& =\sqrt{\rho^{2} \sin ^{2} \phi} \\
& =|\rho \sin \phi| \\
& =\rho \sin \phi
\end{aligned}
$$

(Trig Identity)

$$
\left(\sqrt{x^{2}}:=|x|\right)^{\prime}
$$

$\therefore \rho \cos \phi=\rho \sin \phi$

$$
(\text { Since } \rho \geq 0 \text { and } \phi \geq 0)
$$

$\Longrightarrow \cos \phi=\sin \phi$
(Since $\rho=0$ describes the origin, not a cone)
$\Longrightarrow \tan \phi=1 \quad(\sin \phi=0 \Longrightarrow \phi \in\{0, \pi\}$ describes z-axis, not a cone $)$
$\Longrightarrow \phi=\pi / 4$
(Since $0 \leq \phi \leq \pi / 2$)

Triple Integrals in Spherical Coordinates

Proposition

(Triple Integral in Spherical Coordinates)
Let $f(x, y, z) \in C(E)$ s.t. $E \subset \mathbb{R}^{3}$ is a closed \& bounded solid. Then:

$$
\begin{gathered}
\iiint_{E} f d V \stackrel{S P H}{=} \int_{\text {Smallest } \theta \text {-val in } E}^{\text {Largest } \theta \text {-val in } E} \int_{\text {Smallest } \phi \text {-val in } E}^{\text {Largest } \phi \text {-val in } E} \int_{\text {Inside BS of } E}^{\text {Outside } B S \text { of } E} f \rho^{2} \sin \phi d \rho d \phi d \theta \\
=\iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta \\
- \text { OR EQUVIALENTLY - }
\end{gathered}
$$

$$
\begin{aligned}
\iiint_{E} f d V & \stackrel{S P H}{=} \int_{\text {Smallest } \phi \text {-val in } E}^{\text {Largest } \phi \text {-val in } E} \int_{\text {Smallest } \theta \text {-val in } E}^{\text {Largest } \theta \text {-val in } E} \int_{\text {Inside BS of } E}^{\text {Outside BS of } E} f \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

REMARK: If there's only one surface, treat origin $(\rho=0)$ as inner BS of E. REMARK: Setting up is harder since projection of E on $x y$-plane is useless!

Fin.

