Triple Integrals: Cylindrical & Spherical Coordinates Calculus III

Josh Engwer

TTU

27 October 2014

PART I

PART I:

SETUP OF TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

Cylindrical Coordinates

COORDINATE	INTERPRETATION	REMARK(S)
r	$ r \equiv$ Distance from origin to point	$r\in\mathbb{R}$
		r can be negative
θ	Angle swept CCW from positive <i>x</i> -axis	$ heta \in \mathbb{R}$
		Often $\theta \in [0, 2\pi]$
Z	$ z \equiv $ Distance from <i>xy</i> -plane to point	$z\in\mathbb{R}$

Cylindrical Coordinates

Proposition

(Rectangular o Cylindrical)

$$x = r\cos\theta$$
$$y = r\sin\theta$$
$$z = z$$

Proposition

(Cylindrical → Rectangular)

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \arctan\left(\frac{y}{x}\right)$$
$$z = z$$

<u>REMARK:</u> The focus will be converting Rectangular \rightarrow Cylindrical (top box).

(Circular) Cylinder

Rectangular Form: $x^2 + y^2 = k^2$ Cylindrical Form: r = k $(k \in \mathbb{R})$

Rectangular Form: $x^2 + y^2 = z^2$ Cylindrical Form: r = z

(Circular) Paraboloid

Rectangular Form: $x^2 + y^2 = kz$ Cylindrical Form: $r^2 = kz$ $(k \in \mathbb{R})$

(Circular) Hyperboloid of 1 Sheet

Rectangular Form: $x^2 + y^2 - z^2 = 1$ Cylindrical Form: $r^2 = z^2 + 1$

(Circular) Hyperboloid of 2 Sheets

Rectangular Form: $x^2 + y^2 - z^2 = -1$ Cylindrical Form: $r^2 = z^2 - 1$

Triple Integrals in Cylindrical Coordinates

Proposition

(Triple Integral in Cylindrical Coordinates)

Let $f(x, y, z) \in C(E)$, where solid $E \subset \mathbb{R}^3$ is z-simple s.t. its proj. D is r-simple.

$$\begin{split} \iiint_{E} f \; dV & \stackrel{CYL}{=} & \int_{S \text{mallest } \theta \text{-value in } D}^{\text{Largest } \theta \text{-value in } D} \int_{I \text{nner } BC \text{ of } D}^{\text{Outer } BC \text{ of } D} \int_{B \text{tm } BS \text{ in } \text{ cyl. form}}^{\text{Top } BS \text{ in } \text{ cyl. form}} f \; r \; dz \; dr \; d\theta \\ & = & \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} \int_{f_{1}(r\cos\theta,r\sin\theta)}^{f_{2}(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z) \; r \; dz \; dr \; d\theta \end{split}$$

If region D only has an outer BC, then the inner BC is the **pole** (r = 0). REMARK: **Always** integrate in the order $dz dr d\theta$.

PART II

PART II:

SETUP OF TRIPLE INTEGRALS IN SPHERICAL COORDINATES

Spherical Coordinates

COORDINATE	INTERPRETATION	REMARK(S)
ρ	Distance from origin to point	$\rho \geq 0$
θ	Angle swept CCW from positive <i>x</i> -axis	$\theta \in \mathbb{R}$
		Often $\theta \in [0, 2\pi]$
ϕ	Angle swept from positive z-axis	$\phi \in [0,\pi]$
$\rho \equiv \text{"rho"}$	$ heta \equiv ext{"theta"}$	$\phi \equiv \text{"phi"}$

"The Sphere's Notational Curse"

Unfortunately, other books use different notations for spherical coordinates:

MATH	PHYSICS	GIS/CARTOGRAPHY	ASTRONOMY
(ρ, θ, ϕ)	$(ho,\phi, heta)$	(It's Complicated)	(It's Complicated)
$(ho,artheta,\phi)$	$(ho,\phi,artheta)$		
(ho, heta,arphi)	(ho,arphi, heta)		
(ho,artheta,arphi)	(ho,arphi,artheta)		
(r, θ, ϕ)	$(r,\phi, heta)$		
(r, ϑ, ϕ)	$(r,\phi,artheta)$		
(r, θ, φ)	(r,arphi, heta)		
(r, ϑ, φ)	$(\pmb{r}, \pmb{arphi}, \pmb{artheta})$		

Notations in red are frowned upon by your instructor.....

The convention used going forward is (ρ, θ, ϕ) .

What are x, y, z in terms of ρ , ϕ , θ ???

The legs of the right triangle shown are, by definition, r and z. However, the legs can also be written in terms of hypotenuse ρ and angle ϕ .

$$z = \rho \cos \phi$$
$$r = \rho \sin \phi$$

$$z = \rho \cos \phi \\ r = \rho \sin \phi \implies x = r \cos \theta = (\rho \sin \phi) \cos \theta \\ y = r \sin \theta = (\rho \sin \phi) \sin \theta$$

$$z = \rho \cos \phi \\ r = \rho \sin \phi \implies \begin{cases} x = r \cos \theta = (\rho \sin \phi) \cos \theta \\ y = r \sin \theta = (\rho \sin \phi) \sin \theta \end{cases} \implies \begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

Converting Rectangular \leftrightarrow Spherical

Proposition

 $(Rectangular \rightarrow Spherical)$

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

Proposition

(Spherical → Rectangular)

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\tan \theta = \frac{y}{x}$$

$$\phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

<u>REMARK:</u> The focus will be converting Rectangular \rightarrow Spherical (top box). REMARK: The angle ϕ is not to be confused with the empty set \emptyset .

Rectangular Form: $x^2 + y^2 + z^2 = k^2$ Spherical Form: $\rho = k$ (k > 0)

Half-Cone

Spherical Form:
$$\phi = k$$

$$\left(0 < k < \frac{\pi}{2}\right)$$

Half-Cone

Spherical Form:
$$\phi = k$$
 $\left(\frac{\pi}{2} < k < \pi\right)$

Rectangular Form: z=0Spherical Form: $\phi=\frac{\pi}{2}$

Spherical Forms of Planes

WORKED EXAMPLE: Write the plane z = 4 in spherical form.

$$z = 4 \implies \rho \cos \phi = 4 \implies \rho = \frac{4}{\cos \phi} \implies \boxed{\rho = 4 \sec \phi}$$

WORKED EXAMPLE: Write the plane y = 4 in spherical form.

$$y = 4 \implies \rho \sin \phi \sin \theta = 4 \implies \rho = \frac{4}{\sin \phi \sin \theta} \implies \boxed{\rho = 4 \csc \phi \csc \theta}$$

WORKED EXAMPLE: Write the plane x = 4 in spherical form.

$$x = 4 \implies \rho \sin \phi \cos \theta = 4 \implies \rho = \frac{4}{\sin \phi \cos \theta} \implies \rho = \frac{4 \cos \phi \sec \theta}{\sin \phi \cos \theta}$$

WORKED EXAMPLE: Write the plane x + 2y + 3z = 4 in spherical form.

$$x + 2y + 3z = 4 \implies (\rho \sin \phi \cos \theta) + 2(\rho \sin \phi \sin \theta) + 3(\rho \cos \phi) = 4$$

$$\implies \rho = \frac{4}{\sin\phi\cos\theta + 2\sin\phi\sin\theta + 3\cos\phi}$$

Spherical Forms of Cones

WORKED EXAMPLE: Write the half-cone $z = \sqrt{x^2 + y^2}$ in spherical form.

$$z = \sqrt{x^2 + y^2} \implies z \ge 0 \implies \phi \in [0, \pi/2]$$

Apply conversion $\{x = \rho \sin \phi \cos \theta, y = \rho \sin \phi \sin \theta, z = \rho \cos \phi\}$ to the half-cone and simplify:

$$z = \sqrt{x^2 + y^2}$$

$$\rho \cos \phi = \sqrt{(\rho \sin \phi \cos \theta)^2 + (\rho \sin \phi \sin \theta)^2}$$

$$= \sqrt{\rho^2 \sin^2 \phi} \left(\cos^2 \theta + \sin^2 \theta\right)$$

$$= \sqrt{\rho^2 \sin^2 \phi} \qquad \left(\text{Trig Identity}\right)$$

$$= |\rho \sin \phi| \qquad \left(\sqrt{x^2} := |x|\right)$$

$$= \rho \sin \phi \qquad \left(\text{Since } \rho \ge 0 \text{ and } \phi \ge 0\right)$$

$$\therefore \rho \cos \phi = \rho \sin \phi \qquad \left(\text{Since } \rho \ge 0 \text{ and } \phi \ge 0\right)$$

$$\Rightarrow \cos \phi = \sin \phi \qquad \left(\text{Since } \rho = 0 \text{ describes the origin, not a cone}\right)$$

$$\Rightarrow \tan \phi = 1 \qquad \left(\sin \phi = 0 \implies \phi \in \{0, \pi\} \text{ describes } z\text{-axis, not a cone}\right)$$

$$\Rightarrow \boxed{\phi = \pi/4} \qquad \left(\text{Since } 0 \le \phi \le \pi/2\right)$$

Triple Integrals in Spherical Coordinates

Proposition

(Triple Integral in Spherical Coordinates)

Let $f(x, y, z) \in C(E)$ s.t. $E \subset \mathbb{R}^3$ is a **closed** & **bounded** solid . Then:

$$\iiint_{E} f \, dV \stackrel{SPH}{=} \int_{Smallest \, \theta \text{-}val \, in \, E}^{Largest \, \theta \text{-}val \, in \, E} \int_{Smallest \, \theta \text{-}val \, in \, E}^{Largest \, \phi \text{-}val \, in \, E} \int_{Inside \, BS \, of \, E}^{Outside \, BS \, of \, E} f \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$= \iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$-OR \, EQUVIALENTLY - \int_{Eargest \, \theta \text{-}val \, in \, E}^{Largest \, \theta \text{-}val \, in \, E} \int_{Smallest \, \theta \text{-}val \, in \, E}^{Outside \, BS \, of \, E} f \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$

$$= \iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$

$$= \iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$

REMARK: If there's only one surface, treat **origin** $(\rho = 0)$ as **inner BS** of *E*. REMARK: Setting up is harder since projection of *E* on *xy*-plane is **useless**!

Fin

Fin.