Line Integrals

Calculus III

Josh Engwer

TTU

11 November 2014

PART I

PART I:

LINE INTEGRALS OF SCALAR FIELDS

Line Integral of a Scalar Field f in \mathbb{R}^{2} (Derivation)

Line Integral of a Scalar Field f in \mathbb{R}^{2} (Derivation)

Partition curve Γ into N subarcs \& line segments

Line Integral of a Scalar Field f in \mathbb{R}^{2} (Derivation)

Pick a point $\left(x_{k}^{*}, y_{k}^{*}\right)$ on the $k^{t h}$ subarc

Line Integral of a Scalar Field f in \mathbb{R}^{2} (Derivation)

Label the sides of the $k^{t h}$ right triangle

Line Integral of a Scalar Field f in \mathbb{R}^{2} (Derivation)

Line Integral of a Scalar Field f in \mathbb{R}^{2} (Derivation)

Line Integral of a Scalar Field f in \mathbb{R}^{2} (Derivation)

$$
\begin{aligned}
& \Delta s_{k}=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}} \\
& \Longrightarrow d s=\sqrt{(d x)^{2}+(d y)^{2}}
\end{aligned}
$$

(After taking limits on both sides)

Now, the parameterization of $\Gamma:\left\{\begin{array}{l}x=x(t) \\ y=y(t) \\ t \in[a, b]\end{array}\right.$

$$
\begin{aligned}
& \Longrightarrow \frac{d x}{d t}=x^{\prime}(t) \Longrightarrow d x=x^{\prime}(t) d t \\
& \Longrightarrow \frac{d y}{d t}=y^{\prime}(t) \Longrightarrow d y=y^{\prime}(t) d t
\end{aligned}
$$

$$
\therefore d s=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

$$
\therefore \underbrace{\int_{\Gamma} f(x, y) d s}_{\text {Line Integral }}=\underbrace{\int_{a}^{b} f[x(t), y(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t}_{\text {Ordinary Single Integral }}
$$

Line Integral of a Scalar Field in \mathbb{R}^{2} (Definition)

Definition

Given smooth curve $\Gamma:\left\{\begin{array}{l}x=x(t) \\ y=y(t) \\ t \in[a, b]\end{array}\right.$ and scalar field $f(x, y) \in C(\Gamma)$
Then the line integral of f over curve Γ is defined to be

$$
\int_{\Gamma} f(x, y) d s:=\int_{a}^{b} f[x(t), y(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

REMARK: Very often, the curve is denoted by C :
$\int_{C} f(x, y) d s:=\int_{a}^{b} f[x(t), y(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$

Line Integral of a Scalar Field in \mathbb{R}^{3} (Definition)

Definition

Given smooth curve $\Gamma:\left\{\begin{array}{l}x=x(t) \\ y=y(t) \\ z=z(t) \\ t \in[a, b]\end{array}\right.$ and scalar field $f(x, y, z) \in C(\Gamma)$.
Then the line integral of f over curve Γ is defined to be

$$
\int_{\Gamma} f(x, y, z) d s:=\int_{a}^{b} f[x(t), y(t), z(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

REMARK: Very often, the curve is denoted by C :
$\int_{C} f(x, y, z) d s:=\int_{a}^{b} f[x(t), y(t), z(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t$

Line Integral over a Piecewise Smooth Curve

Parameterizing Curves

TASK: Parameterize a curve starting at $t=a$ and ending at $t=b$.

CURVE	PARAMETERIZATION
$y=f(x)$	$\left\{\begin{array}{l}x=t \\ y=f(t) \\ t \in[a, b]\end{array}\right.$
$x=g(y)$	$\left\{\begin{array}{l}x=g(t) \\ y=t \\ t \in[a, b]\end{array}\right.$
$x^{2}+y^{2}=r^{2}$	$\left\{\begin{array}{l}x=r \cos t \\ y=r \sin t \\ t \in[a, b]\end{array}\right.$
$\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}=1$	
$\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$	$\left\{\begin{array}{l}x=A \cos t \\ y=B \sin t \\ t \in[a, b]\end{array}\right.$

REMARK: Parameterizations are NOT unique.

Line Integral (Curve Orientation)

Line Integral (Curve Orientation)

$$
(-2,0)
$$

$$
C:\left\{\begin{array}{c}
x(t)=2 \cos t \\
y(t)=2 \sin t \\
t \in[0, \pi]
\end{array}\right.
$$

$$
t=0 \rightarrow \operatorname{point}(2,0)
$$

$$
t=\pi \rightarrow \operatorname{point}(-2,0)
$$

$$
-C:\left\{\begin{array}{c}
x(t)=-2 \cos t \\
y(t)=2 \sin t \\
t \in[0, \pi]
\end{array}\right.
$$

$$
t=0 \rightarrow \operatorname{point}(-2,0)
$$

$$
t=\pi \rightarrow \operatorname{point}(2,0)
$$

$$
\int_{-C} f d s=-\int_{C} f d s
$$

Parameterizing Line Segments

$$
\begin{gathered}
P\left(x_{1}, y_{1}, z_{1}\right) \\
C:\left\{\begin{array}{l}
x=(1-t) x_{0}+t x_{1} \\
y=(1-t) y_{0}+t y_{1} \\
z=(1-t) z_{0}+t z_{1} \\
t \in[0,1]
\end{array} \Longleftrightarrow C:\left\{\begin{array}{c}
x=x_{0}+\left(x_{1}-x_{0}\right) t \\
y=y_{0}+\left(y_{1}-y_{0}\right) t \\
z=z_{0}+\left(z_{1}-z_{0}\right) t \\
t \in[0,1]
\end{array}\right.\right.
\end{gathered}
$$

Line Integral of a Scalar Field f in \mathbb{R}^{2} w.r.t. x, y

Proposition

Given smooth curve C : $\left\{\begin{array}{l}x=x(t) \\ y=y(t) \\ t \in[a, b]\end{array}\right.$ and continuous scalar field $f(x, y)$. Then:

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f[x(t), y(t)] x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f[x(t), y(t)] y^{\prime}(t) d t
\end{aligned}
$$

Line Integral of a Scalar Field f in \mathbb{R}^{3} w.r.t. x, y, z

Proposition

Given smooth curve $C:\left\{\begin{array}{l}x=x(t) \\ y=y(t) \\ z=z(t) \\ t \in[a, b]\end{array}\right.$ and continuous scalar field $f(x, y, z)$.
Then:

$$
\begin{aligned}
& \int_{C} f(x, y, z) d x=\int_{a}^{b} f[x(t), y(t), z(t)] x^{\prime}(t) d t \\
& \int_{C} f(x, y, z) d y=\int_{a}^{b} f[x(t), y(t), z(t)] y^{\prime}(t) d t \\
& \int_{C} f(x, y, z) d z=\int_{a}^{b} f[x(t), y(t), z(t)] z^{\prime}(t) d t
\end{aligned}
$$

Line Integrals (Thin Wires)

Proposition

(Center of Mass of a Thin Wire)
Given smooth curve $C:\{x=x(t), \quad y=y(t), \quad z=z(t), \quad t \in[a, b]\}$
Let a thin wire W have the shape of curve C.
Suppose the wire has mass-density $\rho(x, y, z)$ at each point (x, y, z) on the wire.
Then, the center of mass of W is $(\bar{x}, \bar{y}, \bar{z})$, where:

$$
\begin{gathered}
\operatorname{Mass}(W)=\int_{C} \rho(x, y, z) d s \\
\bar{x}=\frac{1}{\operatorname{Mass}(W)} \int_{C} x \rho(x, y, z) d s \\
\bar{y}=\frac{1}{\operatorname{Mass}(W)} \int_{C} y \rho(x, y, z) d s \\
\bar{z}=\frac{1}{\operatorname{Mass}(W)} \int_{C} z \rho(x, y, z) d s
\end{gathered}
$$

REMARK: The center of mass may not lie on the wire itself!

PART II

PART II:

LINE INTEGRALS OF VECTOR FIELDS

Line Integral of a Vector Field $\overrightarrow{\mathbf{F}}$ in \mathbb{R}^{2}

Definition

Let vector function $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t)\rangle$ trace out a smooth curve C in \mathbb{R}^{2}.
Let vector field $\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle$ be continuous on C.
Then the line integral of $\overrightarrow{\mathbf{F}}$ along C is defined by

$$
\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}:=\int_{C}[M(x, y) d x+N(x, y) d y]
$$

where $d \overrightarrow{\mathbf{R}}=\langle d x, d y\rangle=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t$
Alternatively,
$\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}=\int_{a}^{b} \overrightarrow{\mathbf{F}}[\overrightarrow{\mathbf{R}}(t)] \cdot \overrightarrow{\mathbf{R}}^{\prime}(t) d t=\int_{a}^{b}\left[M(x(t), y(t)) x^{\prime}(t)+N(x(t), y(t)) y^{\prime}(t)\right] d t$
where vector function $\overrightarrow{\mathbf{F}}[\overrightarrow{\mathbf{R}}(t)]=\langle M(x(t), y(t)), N(x(t), y(t))\rangle$

Line Integral of a Vector Field $\overrightarrow{\mathbf{F}}$ in \mathbb{R}^{3}

Definition

Let vector function $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t), z(t)\rangle$ trace out a smooth curve C in \mathbb{R}^{3}. Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$ be continuous on C.

Then the line integral of $\overrightarrow{\mathbf{F}}$ along C is defined by

$$
\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}:=\int_{C}[M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z]
$$

where $d \overrightarrow{\mathbf{R}}=\langle d x, d y, d z\rangle=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle d t$

Line Integrals in \mathbb{R}^{2} (Work)

Recall from SST 9.3 that dot products allowed us to compute the work done by a constant force acting on an object along a line:

$$
\text { Work }=\overrightarrow{\mathbf{F}} \cdot \mathbf{P Q}
$$

Line integrals allows us to compute the work done by a force field (i.e. variable force) acting on an object along a curve:

Proposition

Let vector function $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t)\rangle$ trace out a smooth curve C in \mathbb{R}^{2}. Let force field $\overrightarrow{\mathbf{F}}(x, y)$ be continuous on C.
Then the work done by $\overrightarrow{\mathbf{F}}$ on an object moving it along the curve C is

$$
\text { Work }=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}
$$

Line Integrals in \mathbb{R}^{3} (Work)

Recall from SST 9.3 that dot products allowed us to compute the work done by a constant force acting on an object along a line:

$$
\text { Work }=\overrightarrow{\mathbf{F}} \cdot \mathbf{P Q}
$$

Line integrals allows us to compute the work done by a force field (i.e. variable force) acting on an object along a curve:

Proposition

Let vector function $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t), z(t)\rangle$ trace out a smooth curve C in \mathbb{R}^{3}. Let force field $\overrightarrow{\mathbf{F}}(x, y, z)$ be continuous on C.
Then the work done by $\overrightarrow{\mathbf{F}}$ on an object moving it along the curve C is

$$
\text { Work }=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}
$$

Fin.

