Gradient Fields \& Scalar Potentials

Calculus III

Josh Engwer

TTU
17 November 2014

PART I:

GRADIENT FIELDS \& SCALAR POTENTIALS

Gradient Fields \& Scalar Potentials (Definition)

Definition

(Gradient Field in \mathbb{R}^{2})
Let $D \subset \mathbb{R}^{2}$ be a region on the $x y$-plane. Then
$\overrightarrow{\mathbf{F}}$ is a gradient field $\Longleftrightarrow \overrightarrow{\mathbf{F}}(x, y)=\nabla f(x, y) \quad \forall(x, y) \in D$
for some scalar field f which is called the scalar potential of $\overrightarrow{\mathbf{F}}$ in D.

Definition

(Gradient Field in \mathbb{R}^{3})
Let $E \subset \mathbb{R}^{3}$ be a solid in $x y z$-space. Then
$\overrightarrow{\mathbf{F}}$ is a gradient field $\Longleftrightarrow \overrightarrow{\mathbf{F}}(x, y, z)=\nabla f(x, y, z) \quad \forall(x, y, z) \in E$
for some scalar field f which is called the scalar potential of $\overrightarrow{\mathbf{F}}$ in E.
REMARK: Another name for gradient field is conservative vector field.

Fundamental Theorem for Line Integrals (FTLI)

Recall from Calculus I the Fundamental Theorem of Calculus (FTC):

Theorem

Let $[a, b]$ be a closed interval traced out by x for $x \in[a, b]$.
Let scalar function $f \in C^{1}[a, b]$. Then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Here is the corresponding Fundamental Theorem for Line Integrals (FTLI):

Theorem

Let Γ be a piecewise smooth curve traced out by $\overrightarrow{\mathbf{R}}(t)$ for $t \in[a, b]$. Let scalar field $f \in C^{1}(\Gamma)$. Then

$$
\int_{\Gamma} \nabla f \cdot d \overrightarrow{\mathbf{R}}=f[\overrightarrow{\mathbf{R}}(b)]-f[\overrightarrow{\mathbf{R}}(a)]
$$

Proof of the FTLI

PROOF: Given $f(x, y)$, let $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t)\rangle \& G(t)=f[\overrightarrow{\mathbf{R}}(t)]=f[x(t), y(t)]$.
Then $G^{\prime}(t)=\frac{d G}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$
(2-1 Chain Rule)

$$
\begin{array}{rlrl}
\therefore \int_{\Gamma} \nabla f \cdot d \overrightarrow{\mathbf{R}} & =\int_{\Gamma}\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \cdot\langle d x, d y\rangle & \\
& =\int_{\Gamma}\left[\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y\right] & & \text { (Dot Product) } \\
& =\int_{a}^{b}\left[\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}\right] d t & & \left(d x=x^{\prime}(t) d t=\frac{d x}{d t} d t\right) \\
& =\int_{a}^{b} G^{\prime}(t) d t & & \\
& =G(b)-G(a) & & (\text { FTC }) \\
& =f[\overrightarrow{\mathbf{R}}(b)]-f[\overrightarrow{\mathbf{R}}(a)] &
\end{array}
$$

The procedure is similar for $f(x, y, z)$ and $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t), z(t)\rangle$. QED

Simply-Connected Regions in \mathbb{R}^{2}

Not Connected

Definition

A simply-connected set is a connected set with no holes or cuts. A region is a connected set in \mathbb{R}^{2}.
A solid is a connected set in \mathbb{R}^{3}.

Testing for a Gradient Field

Theorem

(Cross-Partials Test for a Gradient Field in \mathbb{R}^{2})
Let $D \subseteq \mathbb{R}^{2}$ be a simply-connected region in the xy-plane.
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1)}(D)$ s.t. $\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle$. Then:

$$
\overrightarrow{\mathbf{F}} \text { is conservative } \Longleftrightarrow \overrightarrow{\mathbf{F}} \text { is a gradient field } \Longleftrightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Theorem

(Curl Test for a Gradient Field in \mathbb{R}^{3})
Let $E \subseteq \mathbb{R}^{3}$ be a simply-connected solid in xyz-space.
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(E)$ s.t. $\overrightarrow{\mathbf{F}}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$. Then:

$$
\overrightarrow{\mathbf{F}} \text { is conservative } \Longleftrightarrow \overrightarrow{\mathbf{F}} \text { is a gradient field } \Longleftrightarrow \nabla \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}
$$

PROOF: Requires Green's Theorem (which will be covered next time)

Indefinite Integral of a Scalar Field

Recall indefinite integration of a scalar function from Calculus I:
$\int 3 x^{2} d x=x^{3}+K \quad[K$ is an arbitrary constant $]$
For a scalar field of two variables:
$\left.\begin{array}{ll}\int 2 x y d x & =(\text { Treat } y \text { as constant })=x^{2} y+\varphi(y)\end{array}\right][\varphi(y)$ is arbitrary function $\left.] ~\right] ~\left[\begin{array}{ll}\text { Treat } x \text { as constant })=x y^{2}+\varphi(x) & {[\varphi(x) \text { is arbitrary function }]}\end{array}\right.$
For a scalar field of three variables:

$$
\begin{aligned}
& \int 2 x y z d x=(\text { Treat } y \& z \text { as constants })=x^{2} y z+\varphi(y, z) \\
& \int 2 x y z d y=(\text { Treat } x \& z \text { as constants })=x y^{2} z+\varphi(x, z) \\
& \int 2 x y z d z=(\text { Treat } x \& y \text { as constants })=x y z^{2}+\varphi(x, y)
\end{aligned}
$$

Scalar Potential Example in \mathbb{R}^{2} ("1-phi Method")

WEX 13-3-1: Let vector field $\overrightarrow{\mathbf{F}}(x, y)=\left\langle 2 x-y, y^{2}-x\right\rangle$.
(a) Verify that $\overrightarrow{\mathbf{F}}$ is conservative \quad (b) Find a scalar potential f for $\overrightarrow{\mathbf{F}}$.
(a) Let $\left\{\begin{array}{l}M(x, y)=2 x-y \\ N(x, y)=y^{2}-x\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}\partial M / \partial y=\frac{\partial}{\partial y}[2 x-y]=-1 \\ \partial N / \partial x=\frac{\partial}{\partial x}\left[y^{2}-x\right]=-1\end{array}\right\}$

Since cross-partials $\partial M / \partial y=\partial N / \partial x$, vector field $\overrightarrow{\mathbf{F}}$ is conservative.
(b) $\overrightarrow{\mathbf{F}}=\nabla f \Longrightarrow\left\langle 2 x-y, y^{2}-x\right\rangle=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle$
[EQ.1]
$\Longrightarrow \frac{\partial f}{\partial x}=2 x-y \Longrightarrow f(x, y)=\int(2 x-y) d x=x^{2}-x y+\varphi(y)$
Now, $y^{2}-x \stackrel{E \underline{\underline{Q} .1}}{ } \frac{\partial f}{\partial y} \stackrel{E Q .2}{\underline{=}} \frac{\partial}{\partial y}\left[x^{2}-x y+\varphi(y)\right]=-x+\varphi^{\prime}(y)$
$\Longrightarrow \varphi^{\prime}(y)=y^{2} \Longrightarrow \varphi(y)=\int y^{2} d y=\frac{1}{3} y^{3}+K$, where K is a constant.
$\therefore f(x, y)=x^{2}-x y+\frac{1}{3} y^{3}+K$, but only 1 scalar potential's needed, so set $K=0$.
\therefore Scalar potential $f(x, y)=x^{2}-x y+\frac{1}{3} y^{3}$

Scalar Potential Example in \mathbb{R}^{2} ("1-phi Method")

WEX 13-3-1: Let vector field $\overrightarrow{\mathbf{F}}(x, y)=\left\langle 2 x-y, y^{2}-x\right\rangle$.
(a) Verify that $\overrightarrow{\mathbf{F}}$ is conservative
(b) Find a scalar potential f for $\overrightarrow{\mathbf{F}}$.
(a) Let $\left\{\begin{array}{l}M(x, y)=2 x-y \\ N(x, y)=y^{2}-x\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}\partial M / \partial y=\frac{\partial}{\partial y}[2 x-y]=-1 \\ \partial N / \partial x=\frac{\partial}{\partial x}\left[y^{2}-x\right]=-1\end{array}\right\}$

Since cross-partials $\partial M / \partial y=\partial N / \partial x$, vector field $\overrightarrow{\mathbf{F}}$ is conservative.
(b) $\overrightarrow{\mathbf{F}}=\nabla f \Longrightarrow\left\langle 2 x-y, y^{2}-x\right\rangle=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle$
$\Longrightarrow \frac{\partial f}{\partial y}=y^{2}-x \Longrightarrow f(x, y)=\int\left(y^{2}-x\right) d y=\frac{1}{3} y^{3}-x y+\varphi(x)$
Now, $2 x-y \stackrel{E Q .1}{=} \frac{\partial f}{\partial x} \stackrel{E Q .2}{=} \frac{\partial}{\partial x}\left[\frac{1}{3} y^{3}-x y+\varphi(x)\right]=-y+\varphi^{\prime}(x)$
$\Longrightarrow \varphi^{\prime}(x)=2 x \Longrightarrow \varphi(x)=\int 2 x d x=x^{2}+K$, where K is a constant.
$\therefore f(x, y)=x^{2}-x y+\frac{1}{3} y^{3}+K$, but only 1 scalar potential's needed, so set $K=0$.
\therefore Scalar potential $f(x, y)=x^{2}-x y+\frac{1}{3} y^{3}$

Scalar Potential Example in \mathbb{R}^{2} ("2-phi Method")

WEX 13-3-1: Let vector field $\overrightarrow{\mathbf{F}}(x, y)=\left\langle 2 x-y, y^{2}-x\right\rangle$.
(a) Verify that $\overrightarrow{\mathbf{F}}$ is conservative \quad (b) Find a scalar potential f for $\overrightarrow{\mathbf{F}}$.
(a) Let $\left\{\begin{array}{l}M(x, y)=2 x-y \\ N(x, y)=y^{2}-x\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}\partial M / \partial y=\frac{\partial}{\partial y}[2 x-y]=-1 \\ \partial N / \partial x=\frac{\partial}{\partial x}\left[y^{2}-x\right]=-1\end{array}\right\}$

Since cross-partials $\partial M / \partial y=\partial N / \partial x$, vector field $\overrightarrow{\mathbf{F}}$ is conservative.
(b) $\overrightarrow{\mathbf{F}}=\nabla f \Longrightarrow\left\langle 2 x-y, y^{2}-x\right\rangle=\langle\partial f / \partial x, \partial f / \partial y\rangle$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x-y \quad \Longrightarrow f(x, y)=\int(2 x-y) d x=x^{2}-x y+\varphi_{1}(y) \\
& \frac{\partial f}{\partial y}=y^{2}-x \quad \Longrightarrow \quad f(x, y)=\int\left(y^{2}-x\right) d y=\frac{1}{3} y^{3}-x y+\varphi_{2}(x)
\end{aligned}
$$

$\therefore f(x, y)=x^{2}-x y+\varphi_{1}(y)=\frac{1}{3} y^{3}-x y+\varphi_{2}(x)$
Now, by visual inspection of this "chain of equations":
$\Longrightarrow \varphi_{1}(y)=\frac{1}{3} y^{3}$ and $\varphi_{2}(x)=x^{2}$
\therefore Scalar potential $f(x, y)=x^{2}-x y+\frac{1}{3} y^{3}$

Scalar Potential Example in \mathbb{R}^{3} ("3-phi Method")

WEX 13-3-2: Given gradient field $\overrightarrow{\mathbf{F}}(x, y, z)=\langle y z, x z, x y\rangle$:
Find a scalar potential f for $\overrightarrow{\mathbf{F}}$.
$\overrightarrow{\mathbf{F}}=\nabla f \Longrightarrow\langle y z, x z, x y\rangle=\langle\partial f / \partial x, \partial f / \partial y, \partial f / \partial z\rangle$

$$
\begin{aligned}
\frac{\partial f}{\partial x}=y z & \Longrightarrow f(x, y, z)=\int y z d x=x y z+\varphi_{1}(y, z) \\
\Longrightarrow \quad \frac{\partial f}{\partial y}=x z & \Longrightarrow f(x, y, z)=\int x z d y=x y z+\varphi_{2}(x, z) \\
\frac{\partial f}{\partial z}=x y & \Longrightarrow f(x, y, z)=\int x y d z=x y z+\varphi_{3}(x, y)
\end{aligned}
$$

$\therefore f(x, y, z)=x y z+\varphi_{1}(y, z)=x y z+\varphi_{2}(x, z)=x y z+\varphi_{3}(x, y)$
Now, by visual inspection of this "chain of equations":
$\Longrightarrow \varphi_{1}(y, z)=\varphi_{2}(x, z)=\varphi_{3}(x, y)=K$, where K is a constant.
$\Longrightarrow f(x, y, z)=x y z+K$, but only 1 scalar potential is needed, so let $K=0$.
\therefore Scalar potential $f(x, y, z)=x y z$

Scalar Potential Example in \mathbb{R}^{3} ("3-phi Method")

WEX 13-3-3: Given conservative vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\langle 2 x, 2 y,-4 z\rangle$:
Find a scalar potential f for $\overrightarrow{\mathbf{F}}$.

$$
\overrightarrow{\mathbf{F}}=\nabla f \Longrightarrow\langle 2 x, 2 y,-4 z\rangle=\langle\partial f / \partial x, \partial f / \partial y, \partial f / \partial z\rangle
$$

$$
\begin{array}{rlrl}
\frac{\partial f}{\partial x}=2 x & \Longrightarrow f(x, y, z)=\int 2 x d x & = & x^{2}+\varphi_{1}(y, z) \\
\Longrightarrow \quad \frac{\partial f}{\partial y}=2 y & \Longrightarrow f(x, y, z)=\int 2 y d y & =y^{2}+\varphi_{2}(x, z) \\
\frac{\partial f}{\partial z}=-4 z & \Longrightarrow f(x, y, z)=\int-4 z d z & =-2 z^{2}+\varphi_{3}(x, y)
\end{array}
$$

$\therefore f(x, y, z)=x^{2}+\varphi_{1}(y, z)=y^{2}+\varphi_{2}(x, z)=-2 z^{2}+\varphi_{3}(x, y)$
Now, by visual inspection of this "chain of equations":
$\Longrightarrow f(x, y, z)=x^{2}+($ Fcn of $y, z)=y^{2}+($ Fcn of $x, z)=-2 z^{2}+($ Fcn of $x, y)$
$\Longrightarrow f(x, y, z)=($ Fcn of $x, y, z)$
$\Longrightarrow f(x, y, z)=x^{2}+y^{2}-2 z^{2}$
\therefore Scalar potential $f(x, y, z)=x^{2}+y^{2}-2 z^{2}$

PART II

PART II:

PATH INDEPENDENCE OF CERTAIN LINE INTEGRALS

Path Independence (Definition)

Definition

Let S be an open connected set in either \mathbb{R}^{2} or \mathbb{R}^{3}.
Then line integral $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$ is independent of path (loP) in S if for any two points $P, Q \in S$, the line integral along every piecewise smooth curve in S from P to Q has the same value.

Closed Curves

Definition

A closed curve in \mathbb{R}^{2} or \mathbb{R}^{3} is a curve begins and ends at the same point.

Proposition

Special notation is used with line integrals along closed curves:

$$
\oint_{C} f d s \quad \oint_{C} f d x \quad \oint_{C} f d y \quad \oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}
$$

Path Independence (Conditions)

Theorem

(Equivalent Conditions for Path Independence)
Let S be an open connected set in either \mathbb{R}^{2} or \mathbb{R}^{3}.
Let vector field $\overrightarrow{\mathbf{F}}$ be continous on S.
Then the following are equivalent (TFAE):
(i) $\overrightarrow{\mathbf{F}}$ is a gradient field on S.
(ii) $\oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}=0$ for every piecewise smooth closed curve C in S.
(iii) $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$ is independent of path within S.

PROOF:

(i) \Longrightarrow (ii): Suppose $\overrightarrow{\mathbf{F}}$ is a gradient field. Then $\overrightarrow{\mathbf{F}}=\nabla f$ for some scalar field f. Any point P on a closed curve C can serve as both the starting \& ending point.
$\therefore \oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}=\oint_{C} \nabla f \cdot d \overrightarrow{\mathbf{R}} \stackrel{\text { FTLI }}{=} f(P)-f(P)=0$
(ii) \Longrightarrow (iii): See textbook
(iii) \Longrightarrow (i): See textbook

Path Independence (Choosing a Simpler Path)

If finding a scalar potential for $\overrightarrow{\mathbf{F}}$ is too tedious or impossible (due to a nonelementary integral being encountered), then choose a simple path starting \& ending at same points as original path.

Path Independence (Choosing a Simpler Path)

If finding a scalar potential for $\overrightarrow{\mathbf{F}}$ is too tedious or impossible (due to a nonelementary integral being encountered),
then choose a simple path starting \& ending at same points as original path.

Path Independence (Choosing a Simpler Path)

If finding a scalar potential for $\overrightarrow{\mathbf{F}}$ is too tedious or impossible (due to a nonelementary integral being encountered),
then choose a simple path starting \& ending at same points as original path.

Fin.

