Gradient Fields & Scalar Potentials

Calculus III

Josh Engwer

TTU

17 November 2014

Josh Engwer (TTU)

Gradient Fields & Scalar Potentials

17 November 2014 1 / 21

PART I:

GRADIENT FIELDS & SCALAR POTENTIALS

Josh Engwer (TTU)

Gradient Fields & Scalar Potentials (Definition)

Definition

(Gradient Field in \mathbb{R}^2)

Let $D \subset \mathbb{R}^2$ be a region on the *xy*-plane. Then

 $\vec{\mathbf{F}}$ is a gradient field $\iff \vec{\mathbf{F}}(x,y) = \nabla f(x,y) \quad \forall (x,y) \in D$

for some scalar field f which is called the scalar potential of $\vec{\mathbf{F}}$ in D.

Definition

(Gradient Field in \mathbb{R}^3)

Let $E \subset \mathbb{R}^3$ be a solid in *xyz*-space. Then

 $\vec{\mathbf{F}}$ is a gradient field $\iff \vec{\mathbf{F}}(x,y,z) = \nabla f(x,y,z) \quad \forall (x,y,z) \in E$

for some scalar field f which is called the **scalar potential** of $\vec{\mathbf{F}}$ in E.

REMARK: Another name for gradient field is conservative vector field.

Fundamental Theorem for Line Integrals (FTLI)

Recall from Calculus I the Fundamental Theorem of Calculus (FTC):

Theorem

Let [a, b] be a closed interval traced out by x for $x \in [a, b]$. Let scalar function $f \in C^1[a, b]$. Then

$$\int_{a}^{b} f'(x) \, dx = f(b) - f(a)$$

Here is the corresponding Fundamental Theorem for Line Integrals (FTLI):

Theorem

Let Γ be a piecewise smooth curve traced out by $\vec{\mathbf{R}}(t)$ for $t \in [a, b]$. Let scalar field $f \in C^1(\Gamma)$. Then

$$\int_{\Gamma} \nabla f \cdot d\vec{\mathbf{R}} = f\left[\vec{\mathbf{R}}(b)\right] - f\left[\vec{\mathbf{R}}(a)\right]$$

Proof of the FTLI

PROOF: Given
$$f(x, y)$$
, let $\vec{\mathbf{R}}(t) = \langle x(t), y(t) \rangle$ & $G(t) = f\left[\vec{\mathbf{R}}(t)\right] = f\left[x(t), y(t)\right]$.
Then $G'(t) = \frac{dG}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$ (2-1 Chain Rule)
 $\therefore \int_{\Gamma} \nabla f \cdot d\vec{\mathbf{R}} = \int_{\Gamma} \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle \cdot \langle dx, dy \rangle$
 $= \int_{\Gamma} \left[\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy \right]$ (Dot Product)
 $= \int_{a}^{b} \left[\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} \right] dt$ ($dx = x'(t)dt = \frac{dx}{dt}dt$)
 $= \int_{a}^{b} G'(t) dt$
 $= f\left[\vec{\mathbf{R}}(b)\right] - f\left[\vec{\mathbf{R}}(a)\right]$

The procedure is similar for f(x, y, z) and $\vec{\mathbf{R}}(t) = \langle x(t), y(t), z(t) \rangle$. QED

Simply-Connected Regions in \mathbb{R}^2

Definition

A simply-connected set is a connected set with no holes or cuts. A region is a connected set in \mathbb{R}^2 .

A solid is a connected set in \mathbb{R}^3 .

Testing for a Gradient Field

Theorem

(Cross-Partials Test for a Gradient Field in \mathbb{R}^2)

Let $D \subseteq \mathbb{R}^2$ be a simply-connected region in the *xy*-plane. Let vector field $\vec{\mathbf{F}} \in C^{(1,1)}(D)$ s.t. $\vec{\mathbf{F}}(x,y) = \langle M(x,y), N(x,y) \rangle$. Then:

$$ec{\mathbf{F}}$$
 is conservative $\iff ec{\mathbf{F}}$ is a gradient field $\iff rac{\partial M}{\partial y} = rac{\partial N}{\partial x}$

Theorem

(Curl Test for a Gradient Field in \mathbb{R}^3)

Let $E \subseteq \mathbb{R}^3$ be a simply-connected solid in *xyz*-space. Let vector field $\vec{\mathbf{F}} \in C^{(1,1,1)}(E)$ s.t. $\vec{\mathbf{F}}(x,y,z) = \langle M(x,y,z), N(x,y,z), P(x,y,z) \rangle$. Then:

 \vec{F} is conservative $\iff \vec{F}$ is a gradient field $\iff \nabla\times\vec{F}=\vec{0}$

PROOF: Requires Green's Theorem (which will be covered next time)

Josh Engwer (TTU)

Indefinite Integral of a Scalar Field

Recall indefinite integration of a scalar function from Calculus I:

$$\int 3x^2 \, dx = x^3 + K \qquad \qquad \left[K \text{ is an arbitrary constant} \right]$$

For a scalar field of two variables:

$$\int 2xy \, dx = (\text{Treat } y \text{ as constant}) = x^2 y + \varphi(y) \qquad \left[\varphi(y) \text{ is arbitrary function}\right]$$
$$\int 2xy \, dy = (\text{Treat } x \text{ as constant}) = xy^2 + \varphi(x) \qquad \left[\varphi(x) \text{ is arbitrary function}\right]$$

For a scalar field of three variables:

$$\int 2xyz \, dx = (\text{Treat } y \& z \text{ as constants}) = x^2yz + \varphi(y, z)$$
$$\int 2xyz \, dy = (\text{Treat } x \& z \text{ as constants}) = xy^2z + \varphi(x, z)$$
$$\int 2xyz \, dz = (\text{Treat } x \& y \text{ as constants}) = xyz^2 + \varphi(x, y)$$

$$arphi$$
 is the Greek letter "phi"

Scalar Potential Example in \mathbb{R}^2 ("1-phi Method")

<u>WEX 13-3-1</u>: Let vector field $\vec{\mathbf{F}}(x, y) = \langle 2x - y, y^2 - x \rangle$. (a) Verify that $\vec{\mathbf{F}}$ is conservative (b) Find a scalar potential *f* for $\vec{\mathbf{F}}$.

(a) Let
$$\left\{ \begin{array}{l} M(x,y) = 2x - y \\ N(x,y) = y^2 - x \end{array} \right\} \implies \left\{ \begin{array}{l} \partial M/\partial y = \frac{\partial}{\partial y} [2x - y] = -1 \\ \partial N/\partial x = \frac{\partial}{\partial x} [y^2 - x] = -1 \end{array} \right\}$$

Since cross-partials $\partial M/\partial y = \partial N/\partial x$, vector field $\vec{\mathbf{F}}$ is conservative.

(b)
$$\vec{\mathbf{F}} = \nabla f \implies \langle 2x - y, y^2 - x \rangle = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$$
 [EQ.1]

$$\implies \frac{\partial f}{\partial x} = 2x - y \implies f(x, y) = \int (2x - y) \, dx = x^2 - xy + \varphi(y) \qquad [EQ.2]$$

Now,
$$y^2 - x \stackrel{EQ.1}{=} \frac{\partial f}{\partial y} \stackrel{EQ.2}{=} \frac{\partial}{\partial y} \left[x^2 - xy + \varphi(y) \right] = -x + \varphi'(y)$$

 $\implies \varphi'(y) = y^2 \implies \varphi(y) = \int y^2 dy = \frac{1}{3}y^3 + K$, where *K* is a **constant**.

 $\therefore f(x,y) = x^2 - xy + \frac{1}{3}y^3 + K$, but only 1 scalar potential's needed, so set K = 0.

 \therefore Scalar potential $\left| f(x,y) = x^2 - xy + \frac{1}{3}y^3 \right|$

Scalar Potential Example in \mathbb{R}^2 ("1-phi Method")

<u>WEX 13-3-1</u>: Let vector field $\vec{\mathbf{F}}(x, y) = \langle 2x - y, y^2 - x \rangle$. (a) Verify that $\vec{\mathbf{F}}$ is conservative (b) Find a scalar potential *f* for $\vec{\mathbf{F}}$.

(a) Let
$$\left\{ \begin{array}{l} M(x,y) = 2x - y \\ N(x,y) = y^2 - x \end{array} \right\} \implies \left\{ \begin{array}{l} \partial M/\partial y = \frac{\partial}{\partial y} [2x - y] = -1 \\ \partial N/\partial x = \frac{\partial}{\partial x} [y^2 - x] = -1 \end{array} \right\}$$

Since cross-partials $\partial M/\partial y = \partial N/\partial x$, vector field $\vec{\mathbf{F}}$ is conservative.

(b)
$$\vec{\mathbf{F}} = \nabla f \implies \langle 2x - y, y^2 - x \rangle = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$$
 [EQ.1]

$$\implies \frac{\partial f}{\partial y} = y^2 - x \implies f(x, y) = \int \left(y^2 - x\right) \, dy = \frac{1}{3}y^3 - xy + \varphi(x) \qquad [EQ.2]$$

Now,
$$2x - y \stackrel{EQ.1}{=} \frac{\partial f}{\partial x} \stackrel{EQ.2}{=} \frac{\partial}{\partial x} \left[\frac{1}{3} y^3 - xy + \varphi(x) \right] = -y + \varphi'(x)$$

 $\implies \varphi'(x) = 2x \implies \varphi(x) = \int 2x \, dx = x^2 + K$, where *K* is a **constant**.
 $\therefore f(x, y) = x^2 - xy + \frac{1}{3}y^3 + K$, but only 1 scalar potential's needed, so set $K = 0$.

$$\therefore$$
 Scalar potential $f(x, y) = x^2 - xy + \frac{1}{3}y^3$

Scalar Potential Example in \mathbb{R}^2 ("2-phi Method")

<u>WEX 13-3-1</u>: Let vector field $\vec{\mathbf{F}}(x, y) = \langle 2x - y, y^2 - x \rangle$. (a) Verify that $\vec{\mathbf{F}}$ is conservative (b) Find a scalar potential *f* for $\vec{\mathbf{F}}$.

(a) Let
$$\left\{ \begin{array}{l} M(x,y) = 2x - y \\ N(x,y) = y^2 - x \end{array} \right\} \implies \left\{ \begin{array}{l} \partial M/\partial y = \frac{\partial}{\partial y} [2x - y] = -1 \\ \partial N/\partial x = \frac{\partial}{\partial x} [y^2 - x] = -1 \end{array} \right\}$$

Since cross-partials $\partial M/\partial y = \partial N/\partial x$, vector field $\vec{\mathbf{F}}$ is conservative.

(b)
$$\vec{\mathbf{F}} = \nabla f \implies \langle 2x - y, y^2 - x \rangle = \langle \partial f / \partial x, \partial f / \partial y \rangle$$

$$\implies \frac{\partial f}{\partial x} = 2x - y \implies f(x, y) = \int (2x - y) \, dx = x^2 - xy + \varphi_1(y)$$

$$\stackrel{\partial f}{\partial y} = y^2 - x \implies f(x, y) = \int (y^2 - x) \, dy = \frac{1}{3}y^3 - xy + \varphi_2(x)$$

: $f(x, y) = x^2 - xy + \varphi_1(y) = \frac{1}{3}y^3 - xy + \varphi_2(x)$

Now, by visual inspection of this "chain of equations":

$$\implies \varphi_1(y) = \frac{1}{3}y^3$$
 and $\varphi_2(x) = x^2$

 \therefore Scalar potential $f(x, y) = x^2 - xy + \frac{1}{3}y^3$

Scalar Potential Example in \mathbb{R}^3 ("3-phi Method")

<u>WEX 13-3-2</u>: Given gradient field $\vec{\mathbf{F}}(x, y, z) = \langle yz, xz, xy \rangle$: Find a scalar potential *f* for $\vec{\mathbf{F}}$.

$$\vec{\mathbf{F}} = \nabla f \implies \langle yz, xz, xy \rangle = \langle \partial f / \partial x, \partial f / \partial y, \partial f / \partial z \rangle$$

$$\stackrel{\partial f}{\partial x} = yz \implies f(x, y, z) = \int yz \, dx = xyz + \varphi_1(y, z)$$

$$\implies \frac{\partial f}{\partial y} = xz \implies f(x, y, z) = \int xz \, dy = xyz + \varphi_2(x, z)$$

$$\stackrel{\partial f}{\partial z} = xy \implies f(x, y, z) = \int xy \, dz = xyz + \varphi_3(x, y)$$

$$\therefore f(x, y, z) = xyz + \varphi_1(y, z) = xyz + \varphi_2(x, z) = xyz + \varphi_3(x, y)$$

Now, by visual inspection of this "chain of equations":

 $\implies \varphi_1(y,z) = \varphi_2(x,z) = \varphi_3(x,y) = K$, where *K* is a **constant**.

 $\implies f(x, y, z) = xyz + K$, but only 1 scalar potential is needed, so let K = 0.

 \therefore Scalar potential f(x, y, z) = xyz

Scalar Potential Example in \mathbb{R}^3 ("3-phi Method")

<u>WEX 13-3-3:</u> Given conservative vector field $\vec{\mathbf{F}}(x, y, z) = \langle 2x, 2y, -4z \rangle$: Find a scalar potential *f* for $\vec{\mathbf{F}}$.

$$\vec{\mathbf{F}} = \nabla f \implies \langle 2x, 2y, -4z \rangle = \langle \partial f / \partial x, \partial f / \partial y, \partial f / \partial z \rangle$$

$$\stackrel{\partial f}{\partial x} = 2x \implies f(x, y, z) = \int 2x \, dx = x^2 + \varphi_1(y, z)$$

$$\implies \frac{\partial f}{\partial y} = 2y \implies f(x, y, z) = \int 2y \, dy = y^2 + \varphi_2(x, z)$$

$$\stackrel{\partial f}{\partial z} = -4z \implies f(x, y, z) = \int -4z \, dz = -2z^2 + \varphi_3(x, y)$$

$$\therefore f(x, y, z) = x^2 + \varphi_1(y, z) = y^2 + \varphi_2(x, z) = -2z^2 + \varphi_3(x, y)$$

Now, by visual inspection of this "chain of equations":

$$\implies f(x, y, z) = x^2 + (\mathsf{Fcn of } y, z) = y^2 + (\mathsf{Fcn of } x, z) = -2z^2 + (\mathsf{Fcn of } x, y)$$

$$\implies f(x, y, z) = (\mathsf{Fcn of } x, y, z)$$

$$\implies f(x, y, z) = x^2 + y^2 - 2z^2$$

: Scalar potential $f(x, y, z) = x^2 + y^2 - 2z^2$

PART II:

PATH INDEPENDENCE OF CERTAIN LINE INTEGRALS

Josh Engwer (TTU)

Path Independence (Definition)

Definition

Let *S* be an open connected set in either \mathbb{R}^2 or \mathbb{R}^3 . Then line integral $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$ is **independent of path** (IoP) in *S* if for any two points $P, Q \in S$, the line integral along every piecewise smooth curve in *S* from *P* to *Q* has the same value.

Josh Engwer (TTU)

Gradient Fields & Scalar Potentials

Definition

A closed curve in \mathbb{R}^2 or \mathbb{R}^3 is a curve begins and ends at the same point.

Proposition

Special notation is used with line integrals along closed curves:

$$\oint_C f \, ds \qquad \oint_C f \, dx \qquad \oint_C f \, dy \qquad \oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$$

Path Independence (Conditions)

Theorem

(Equivalent Conditions for Path Independence)

Let *S* be an open connected set in either \mathbb{R}^2 or \mathbb{R}^3 . Let vector field $\vec{\mathbf{F}}$ be continuous on *S*.

Then the following are equivalent (TFAE):

- (i) $\vec{\mathbf{F}}$ is a gradient field on S.
- (ii) $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}} = 0$ for every piecewise smooth closed curve *C* in *S*.
- (iii) $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$ is independent of path within *S*.

PROOF:

(i) \implies (ii): Suppose $\vec{\mathbf{F}}$ is a gradient field. Then $\vec{\mathbf{F}} = \nabla f$ for some scalar field f. Any point P on a closed curve C can serve as both the starting & ending point. $\therefore \oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}} = \oint_C \nabla f \cdot d\vec{\mathbf{R}} \stackrel{FTLI}{=} f(P) - f(P) = 0$

(ii) $\stackrel{J_C}{\Longrightarrow}$ (iii): See textbook (iii) \implies (i): See textbook

Path Independence (Choosing a Simpler Path)

If finding a scalar potential for \vec{F} is too tedious or impossible (due to a nonelementary integral being encountered), then choose a simple path starting & ending at same points as original path.

Path Independence (Choosing a Simpler Path)

If finding a scalar potential for \vec{F} is too tedious or impossible (due to a nonelementary integral being encountered), then choose a simple path starting & ending at same points as original path.

Josh Engwer (TTU)

Path Independence (Choosing a Simpler Path)

If finding a scalar potential for \vec{F} is too tedious or impossible (due to a nonelementary integral being encountered), then choose a simple path starting & ending at same points as original path.

Josh Engwer (TTU)

Fin.