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Jordan Curves

Definition
A Jordan curve is a piecewise smooth closed curve that does not intersect
itself.
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Positively Oriented Boundary Curves
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Negatively Oriented Boundary Curves
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A Simply-Connected Region has ”No Holes”
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A Simply-Connected Region has ”No Holes”
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Green’s Theorem (for Simply-Connected Regions)

Theorem
Let D ⊂ R2 be a simply-connected region in the xy-plane.
Let Γ be a positively oriented Jordan curve that bounds region D.
Let vector field ~F ∈ C(1,1)(D) s.t. ~F(x, y) = 〈M(x, y),N(x, y)〉.
Then ∮

Γ

(M dx + N dy) =

∫∫
D

(
∂N
∂x
− ∂M

∂y

)
dA
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Proof of Green’s Theorem (via Bootstrapping)

Let’s prove Green’s Theorem for a simply-connected region D.

The proof uses the technique of bootstrapping, meaning several simpler
cases are proven, and then more general (complicated) cases are proven by
expressing them in terms of the simpler cases.

Here’s how bootstrapping will proceed with proving Green’s Theorem:
1 Prove Green’s Theorem for rectangular regions.
2 Prove Green’s Theorem for regions that are both V-Simple & H-Simple.
3 Prove Green’s Theorem for any simply-connected region.
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Proof of Green’s Theorem (via Bootstrapping)

PART I: Suppose enclosed region D is a rectangle.
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Proof of Green’s Theorem (via Bootstrapping)

PART I: Suppose enclosed region D is a rectangle.

Parameterize subpaths Γ1, . . . ,Γ4:

Γ1 : ~R1(t) = 〈t, c〉 for t ∈ [a, b] =⇒ d~R1(t) = 〈1, 0〉 dt =⇒ dy = 0
Γ2 : ~R2(t) = 〈b, t〉 for t ∈ [c, d] =⇒ d~R2(t) = 〈0, 1〉 dt =⇒ dx = 0
−Γ3 : ~R3(t) = 〈t, d〉 for t ∈ [a, b] =⇒ d~R3(t) = 〈1, 0〉 dt =⇒ dy = 0
−Γ4 : ~R4(t) = 〈a, t〉 for t ∈ [c, d] =⇒ d~R4(t) = 〈0, 1〉 dt =⇒ dx = 0
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Proof of Green’s Theorem (via Bootstrapping)

PART I: Suppose enclosed region D is a rectangle.

I1 =

∫∫
D

∂M
∂y

dA =

∫ b

a

∫ d

c

∂M
∂y

dy dx =

∫ b

a

[
M(x, y)

]y=d

y=c
dx

FTC
=

∫ b

a
[M(x, d)−M(x, c)] dx =

∫ b

a
M(t, d) dt −

∫ b

a
M(t, c) dt

=

∫
−Γ3

M dx−
∫

Γ1

M dx = −
∫

Γ3

M dx−
∫

Γ1

M dx = −
∮

Γ

M dx
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Proof of Green’s Theorem (via Bootstrapping)

PART I: Suppose enclosed region D is a rectangle.

I2 =

∫∫
D

∂N
∂x

dA =

∫ d

c

∫ b

a

∂N
∂x

dx dy =

∫ d

c

[
N(x, y)

]x=b

x=a
dy

FTC
=

∫ d

c
[N(b, y)− N(a, y)] dy =

∫ d

c
N(b, t) dt −

∫ d

c
N(a, t) dt

=

∫
Γ2

N dy−
∫
−Γ4

N dy =

∫
Γ2

N dy +

∫
Γ4

N dy =

∮
Γ

N dy
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Proof of Green’s Theorem (via Bootstrapping)

PART I: Suppose enclosed region D is a rectangle.

∴
∫∫

D

(
∂N
∂x
− ∂M

∂y

)
dA =

∫∫
D

∂N
∂x

dA−
∫∫

D

∂M
∂y

dA

=

∮
Γ

N dy−
(
−
∮

Γ

M dx
)

=

∮
Γ

(M dx + N dy)

QED
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Proof of Green’s Theorem (via Bootstrapping)

PART II: Suppose enclosed region D is both V-Simple & H-Simple.
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Proof of Green’s Theorem (via Bootstrapping)
PART II: Suppose enclosed region D is both V-Simple & H-Simple.

Parameterize subpaths Γ1,Γ2 two ways:

Γ1 : ~R1(t) = 〈t, g1(t)〉 for t ∈ [a, b] =⇒ d~R1(t) = 〈1, g′1(t)〉 dt =⇒ dx = dt
−Γ2 : ~R2(t) = 〈t, g2(t)〉 for t ∈ [a, b] =⇒ d~R2(t) = 〈1, g′2(t)〉 dt =⇒ dx = dt

Γ1 : ~R1(t) = 〈h1(t), t〉 for t ∈ [c, d] =⇒ d~R1(t) = 〈h′1(t), 1〉 dt =⇒ dy = dt
−Γ2 : ~R2(t) = 〈h2(t), t〉 for t ∈ [c, d] =⇒ d~R2(t) = 〈h′2(t), 1〉 dt =⇒ dy = dt
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Proof of Green’s Theorem (via Bootstrapping)
PART II: Suppose enclosed region D is both V-Simple & H-Simple.

I1 =

∫∫
D

∂M
∂y

dA =

∫ b

a

∫ g2(x)

g1(x)

∂M
∂y

dy dx =

∫ b

a

[
M(x, y)

]y=g2(x)

y=g1(x)
dx

FTC
=

∫ b

a
[M(x, g2(x))−M(x, g1(x))] dx =

∫ b

a
M(t, g2(t)) dt −

∫ b

a
M(t, g1(t)) dt

=

∫
−Γ2

M dx−
∫

Γ1

M dx = −
∫

Γ2

M dx−
∫

Γ1

M dx = −
∮

Γ

M dx
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Proof of Green’s Theorem (via Bootstrapping)
PART II: Suppose enclosed region D is both V-Simple & H-Simple.

I2 =

∫∫
D

∂N
∂x

dA =

∫ d

c

∫ h1(y)

h2(y)

∂N
∂x

dx dy =

∫ d

c

[
N(x, y)

]x=h1(y)

x=h2(y)
dy

FTC
=

∫ d

c
[N(h1(y), y)− N(h2(y), y)] dy =

∫ d

c
N(h1(t), t) dt −

∫ d

c
N(h2(t), t) dt

=

∫
Γ1

N dy−
∫
−Γ2

N dy =

∫
Γ1

N dy +

∫
Γ2

N dy =

∮
Γ

N dy
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Proof of Green’s Theorem (via Bootstrapping)

PART II: Suppose enclosed region D is both V-Simple & H-Simple.

∴
∫∫

D

(
∂N
∂x
− ∂M

∂y

)
dA =

∫∫
D

∂N
∂x

dA−
∫∫

D

∂M
∂y

dA

=

∮
Γ

N dy−
(
−
∮

Γ

M dx
)

=

∮
Γ

(M dx + N dy)

QED
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Proof of Green’s Theorem (via Bootstrapping)

PART III: Suppose enclosed region D is simply-connected.
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Proof of Green’s Theorem (via Bootstrapping)

PART III: Suppose enclosed region D is simply-connected.

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4
where Γk is the positively-oriented path enclosing only subregion Dk.

Subdivide region D into rectangular and/or (V & H)-simple subregions.
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Proof of Green’s Theorem (via Bootstrapping)
PART III: Suppose enclosed region D is simply-connected.

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4
where Γk is the positively-oriented path enclosing only subregion Dk.

Observe that the line integral along a blue arrow exactly cancels with the
same line integral along the red arrow pointing in the opposite direction.

What remains is the line integral along the black arrows:
∮

Γ
(M dx + N dy).
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Proof of Green’s Theorem (via Bootstrapping)
PART III: Suppose enclosed region D is simply-connected.

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4
where Γk is the positively-oriented path enclosing only subregion Dk.

∴
∮

Γ

(M dx + N dy) =

4∑
k=1

∮
Γk

(M dx + N dy)

=

4∑
k=1

∫∫
Dk

(
∂N
∂x
− ∂M

∂y

)
dA =

∫∫
D

(
∂N
∂x
− ∂M

∂y

)
dA
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Green’s Theorem (for Simply-Connected Regions)

Theorem
Let D ⊂ R2 be a simply-connected region in the xy-plane.
Let Γ be a positively oriented Jordan curve that bounds region D.
Let vector field ~F ∈ C(1,1)(D) s.t. ~F(x, y) = 〈M(x, y),N(x, y)〉.
Then ∮

Γ

~F · d~R =

∫∫
D
(∇× ~F) · k̂ dA
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Fin

Fin.
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