Surface Integrals \& Flux Integrals

Calculus III

Josh Engwer

TTU
24 November 2014

PART I:

SURFACE INTEGRALS

Smooth Surfaces

Smooth Surfaces

Piecewise Smooth Surfaces

Definition

A surface S is smooth if the normal vector at each point exists \& is nonzero.

Definition

A surface S is piecewise smooth if S is the union of smooth subsurfaces.

Surface Integrals

Definition

Let smooth surface $S \subset \mathbb{R}^{3}$ be defined by $z=f(x, y)$.
Let region $D \subset \mathbb{R}^{2}$ be the projection of surface S onto the $x y$-plane.
Let $f \in C^{(1,1)}(D)$ and $g \in C(S)$.
Then the surface integral of g across S is defined to be:

$$
\underbrace{\iint_{S} g(x, y, z) d S}_{\text {sufface integral }}:=\underbrace{\iint_{D} g(x, y, f(x, y)) \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A}_{\text {double integral }}
$$

REMARK:

$\iint_{S} d S$ gives the surface area of the portion of S over region D in $x y$-plane.

Surface Integral Across a Piecewise Smooth Surface

$$
S=S_{1} \cup S_{2} \cup S_{3}
$$

$$
\iint_{S} g d S=\iint_{S_{1}} g d S+\iint_{S_{2}} g d S+\iint_{S_{3}} g d S
$$

PART II:

FLUX INTEGRALS

Orientable Surfaces

Definition

A surface S is orientable if S has a unit normal vector field $\widehat{\mathbf{N}}(x, y, z) \in C(S)$. i.e. the unit normal vector field $\widehat{\mathbf{N}}$ must be continuous along the surface S.

Geometrically, this means as one traverses one side of the surface, the unit normal vector does not "flip direction."

REMARK: Most typical surfaces are orientable.

Non-orientable Surfaces (Möbius Strip)

After one "round trip" around the Möbius Strip, the unit normal vectors flip!

Non-orientable Surfaces (Klein Bottle)

After one "round trip" around the Klein Bottle, the unit normal vector flips!

Flux Integral of Surface $z=f(x, y)$

Proposition

Let orientable surface $S \subset \mathbb{R}^{3}$ be described by $z=f(x, y)$ w/ unit normal field $\widehat{\mathbf{N}}$. Let region $D \subset \mathbb{R}^{2}$ be the projection of surface S onto the xy-plane. Let vector field $\overrightarrow{\mathbf{F}}(x, y, z) \in C^{(1,1,1)}(S)$ and scalar field $f \in C^{(1,1)}(D)$. Then the flux (integral) of $\overrightarrow{\mathrm{F}}$ across S is:

$$
\begin{aligned}
\iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S & =\iint_{D} \overrightarrow{\mathbf{F}}(x, y, f(x, y)) \cdot\left\langle-f_{x},-f_{y}, 1\right\rangle d A \\
\iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S & =\iint_{D} \overrightarrow{\mathbf{F}}(x, y, f(x, y)) \cdot\left\langle f_{x}, f_{y},-1\right\rangle d A
\end{aligned}
$$

Flux Integral of Surface $z=f(x, y)$ (Proof)

Proposition

Let orientable surface $S \subset \mathbb{R}^{3}$ be described by $z=f(x, y)$ w/ unit normal field $\widehat{\mathbf{N}}$. Let region $D \subset \mathbb{R}^{2}$ be the projection of surface S onto the xy-plane. Let vector field $\overrightarrow{\mathbf{F}}(x, y, z) \in C^{(1,1,1)}(S)$ and scalar field $f \in C^{(1,1)}(D)$. Then the flux (integral) of $\overrightarrow{\mathrm{F}}$ across S is:

$$
\begin{aligned}
& \iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iint_{D} \overrightarrow{\mathbf{F}}(x, y, f(x, y)) \cdot\left\langle-f_{x},-f_{y}, 1\right\rangle d A \\
& \iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iint_{D} \overrightarrow{\mathbf{F}}(x, y, f(x, y)) \cdot\left\langle f_{x}, f_{y},-1\right\rangle d A
\end{aligned}
$$

PROOF: Surface $z=f(x, y) \Longrightarrow$ Level Surface $G(x, y, z)=z-f(x, y)$
\Longrightarrow Upward Unit Normal to Surface is $\widehat{\mathbf{N}}=\frac{\nabla G}{\|\nabla G\|}=\frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{\left(-f_{x}\right)^{2}+\left(-f_{y}\right)^{2}+1}}$
Recall that $d S=\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A \Longrightarrow \widehat{\mathbf{N}} d S=\left\langle-f_{x},-f_{y}, 1\right\rangle d A$
$\therefore \iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iint_{D} \overrightarrow{\mathbf{F}}(x, y, f(x, y)) \cdot\left\langle-f_{x},-f_{y}, 1\right\rangle d A$
QED

Flux (Interpretation)

$\iint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$ is the total sum of all such dot products $\overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}}$ across S.

Flux (Interpretation)

Flux Integral across a Piecewise Smooth Surface

$$
\begin{gathered}
S=S_{1} \cup S_{2} \cup S_{3} \\
S_{2} \\
\iint_{S} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d S=\iint_{S_{1}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d S+\iint_{S_{2}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d S+\iint_{S_{3}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d S
\end{gathered}
$$

Fin.

