Stokes' Theorem

Calculus III

Josh Engwer

TTU
01 December 2014

Compatible Orientations

Definition

The orientations of a surface S \& its bounding Jordan curve C are said to be compatible if the positive direction on C is counterclockwise in relation to the outward normal vector $\widehat{\mathbf{N}}$ of the surface

Compatible Orientations (Right-Hand Rule)

Stokes' Theorem

Theorem

Let orientable surface $S \subset \mathbb{R}^{3}$ have the unit normal vector field $\widehat{\mathbf{N}}$. Moreover, let S be bounded by a Jordan curve C whose orientation is compatible with the orientation on S.
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(S)$.
Then:

$$
\oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}=\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S
$$

PROOF: See the textbook if interested.

Stokes' Thm is a Generalization of Green's Theorem

Proposition

Green's Theorem is a special case of Stokes' Theorem.

Stokes' Thm is a Generalization of Green's Theorem

Proposition

Green's Theorem is a special case of Stokes' Theorem.
PROOF: Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$.
Green's Thm requires a region D on the $x y$-plane which is the surface $z=0$.
Let $f(x, y)=0 \Longrightarrow d S=\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A=\sqrt{1+(0)^{2}+(0)^{2}} d A=d A$.
WLOG assume bounding Jordan curve C to region D has positive orientation. Then the unit normal field $\widehat{\mathbf{N}}=\widehat{\mathbf{k}}=\langle 0,0,1\rangle$.

$$
\begin{aligned}
& \therefore \oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}} \stackrel{\text { STOKES }}{=} \iint_{D}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S \\
&=\iint_{D}\left\langle\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}, \frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}, \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right\rangle \cdot\langle 0,0,1\rangle d A \\
&=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \quad \text { QED }
\end{aligned}
$$

WLOG \equiv "Without Loss Of Generality"

The Value of Stokes' Theorem

Stokes' Thm converts a hard closed line integral to a simpler flux integral.

$$
\underbrace{\oint_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}}_{\text {Hard closed line integral }}=\underbrace{\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S}_{\text {Easier flux integral }}
$$

But how to choose an appropriate surface S ??

BOUNDARY CURVE	CANDIDATE SURFACE(S)
Circle	Paraboloid, Half-Sphere, Circular Cone, or Plane
Ellipse	Paraboloid, Half-Ellipsoid, Elliptic Cone, or Plane
Polygon	Plane
Intersection of S_{1} and S_{2}	Surface S_{1} or S_{2}

The Value of Stokes' Theorem

Stokes' Thm converts a hard flux integral to a simpler closed line integral.

$$
\underbrace{\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S}_{\text {Hard flux integral }}=\underbrace{\oint_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}}_{\text {Easier closed line integral }}
$$

Γ is the positively-oriented Jordan boundary curve of surface S.
Parameterize Γ as appropriate - typically, Γ is the intersection of S \& a plane.

Fin

Fin.

