Divergence Theorem (AKA Gauss' Theorem) Calculus III

Josh Engwer

TTU

02 December 2014

Open & Closed Surfaces in \mathbb{R}^3

Definition

A **closed surface** $S \subset \mathbb{R}^3$ has no boundary curve.

An **open surface** $S \subset \mathbb{R}^3$ has a boundary curve (in red on above figure).

Divergence Theorem (AKA Gauss' Theorem)

Theorem

Let <u>closed</u> piecewise smooth surface S have <u>outward</u> unit normal $\widehat{\mathbf{N}}$. Let simply-connected solid $E \subset \mathbb{R}^3$ be the interior of surface S. i.e. S is the outer boundary surface of solid E. Let vector field $\vec{\mathbf{F}} \in C^{(1,1,1)}(E)$.

Then:

$$\iint_{S} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \ dS = \iiint_{E} \nabla \cdot \vec{\mathbf{F}} \ dV$$

PROOF: See the textbook if interested.

Gauss' Theorem on the xy-plane

Theorem

Let Jordan curve Γ be positively-oriented and have <u>outward</u> unit normal $\widehat{\mathbf{N}}$. Let simply-connected region $D \subset \mathbb{R}^2$ be the interior of curve Γ .

i.e. Γ is the outer boundary curve of region D.

Let vector field $\vec{\mathbf{F}} \in C^{(1,1)}(D)$.

Then:

$$\oint_{\Gamma} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, ds = \iint_{D} \nabla \cdot \vec{\mathbf{F}} \, dA$$

Gauss' Theorem on the *xy*-plane (Proof)

Theorem

Let Jordan curve Γ be positively-oriented and have <u>outward</u> unit normal \mathbf{N} . Let simply-connected region $D \subset \mathbb{R}^2$ be the interior of Γ . Let $\vec{\mathbf{F}} \in C^{(1,1)}(D)$. Then:

$$\oint_{\Gamma} \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} \, ds = \iint_{D} \nabla \cdot \vec{\mathbf{F}} \, dA$$

$$\begin{array}{ll} \underline{\mathsf{PROOF:}} \ \ \mathsf{Let} \ \vec{\mathbf{F}}(x,y) = \langle M(x,y), N(x,y) \rangle \ \& \ \Gamma : \ \vec{\mathbf{R}}(t) = \langle x(t), y(t) \rangle, \ t \in [a,b]. \\ \mathsf{Then,} \ \vec{\mathbf{T}}(t) = \langle x'(t), y'(t) \rangle \implies \vec{\mathbf{T}}(t) \cdot \vec{\mathbf{N}}(t) = 0 \implies \vec{\mathbf{N}}(t) = \langle y'(t), -x'(t) \rangle \\ \implies \widehat{\mathbf{N}} \ ds = \left(\frac{\langle y'(t), -x'(t) \rangle}{\sqrt{[y'(t)]^2 + [-x'(t)]^2}} \right) \left(\sqrt{[x'(t)]^2 + [y'(t)]^2} \ dt \right) = \langle y'(t), -x'(t) \rangle \ dt \\ \therefore \oint_{\Gamma} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \ ds = \int_{a}^{b} \langle M(x,y), N(x,y) \rangle \cdot \langle y'(t), -x'(t) \rangle \ dt \\ = \oint_{\Gamma} \langle M, N \rangle \cdot \langle dy, -dx \rangle = \oint_{\Gamma} (-N) \ dx + M \ dy \\ \stackrel{GREEN}{=} \iint_{\Gamma} \left[\frac{\partial M}{\partial x} - \left(-\frac{\partial N}{\partial y} \right) \right] dA = \iint_{\Gamma} \nabla \cdot \vec{\mathbf{F}} \ dA \qquad \mathsf{QED} \end{array}$$

Using Gauss' Theorem with Open Surfaces

Consider the above open box with the top face removed.

Without Gauss' Theorem:

$$\iint_{S_{Bottom}} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS =$$

$$\iint_{S_{Bottom}} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS + \iint_{S_{Left}} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS + \iint_{S_{Right}} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS + \iint_{S_{Front}} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS + \iint_{S_{Back}} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} \, dS$$
With Gauss' Theorem:

With Gauss' Theorem:

$$\iint_{S_{Box}} \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} dS = \iiint_{E_{Box}} \nabla \cdot \vec{\mathbf{F}} dV - \iint_{S_{Top}} \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} dS$$

Generalizations of the FTC

THEOREM	FTC FORM OF THEOREM	REMARK(S)
FTC	$\int_{a}^{b} f'(x) \ dx = f(b) - f(a)$	
FTLI	$\int_{C} \nabla f \cdot d\vec{\mathbf{R}} = f \left[\vec{\mathbf{R}}(b) \right] - f \left[\vec{\mathbf{R}}(a) \right]$	$C: \vec{\mathbf{R}}(t), a \leq t \leq b$
Green's Thm	$\iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA = \oint_{\partial D} \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$	$\vec{\mathbf{F}}(x,y) = \langle M(x,y), N(x,y) \rangle$
Stokes' Thm	$\iint_{S} \left(\nabla \times \vec{\mathbf{F}} \right) \cdot \hat{\mathbf{N}} dS = \oint_{\partial S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$	$S\equiv$ open surface
Gauss' Thm	$\iiint_{E} \nabla \cdot \vec{\mathbf{F}} \ dV = \oiint_{\partial E} \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} \ dS$	$E\equiv { m closed\ surface}$
Gauss' Thm	$\iint_{D} \nabla \cdot \vec{\mathbf{F}} dA = \oint_{\partial D} \vec{\mathbf{F}} \cdot \widehat{\mathbf{N}} ds$	$\vec{\mathbf{F}}(x,y) = \langle M(x,y), N(x,y) \rangle$

 $\partial D \equiv \text{Boundary curve of region } D$ $\partial S \equiv \text{Boundary curve of surface } S$

 $\partial E \equiv \text{Boundary surface of solid } E$

Fin

Fin.