Divergence Theorem (AKA Gauss' Theorem)

Calculus III

Josh Engwer

TTU
02 December 2014

Open \& Closed Surfaces in \mathbb{R}^{3}

Definition

A closed surface $S \subset \mathbb{R}^{3}$ has no boundary curve. An open surface $S \subset \mathbb{R}^{3}$ has a boundary curve (in red on above figure).

Divergence Theorem (AKA Gauss' Theorem)

Theorem

Let closed piecewise smooth surface S have outward unit normal $\widehat{\mathbf{N}}$. Let simply-connected solid $E \subset \mathbb{R}^{3}$ be the interior of surface S.
i.e. S is the outer boundary surface of solid E.

Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(E)$.
Then:

$$
\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iiint_{E} \nabla \cdot \overrightarrow{\mathbf{F}} d V
$$

PROOF: See the textbook if interested.

Gauss' Theorem on the $x y$-plane

Theorem

Let Jordan curve Γ be positively-oriented and have outward unit normal $\widehat{\mathbf{N}}$. Let simply-connected region $D \subset \mathbb{R}^{2}$ be the interior of curve Γ.
i.e. Γ is the outer boundary curve of region D.

Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1)}(D)$.
Then:

$$
\oint_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d s=\iint_{D} \nabla \cdot \overrightarrow{\mathbf{F}} d A
$$

Gauss' Theorem on the $x y$-plane (Proof)

Theorem

Let Jordan curve Γ be positively-oriented and have outward unit normal $\widehat{\mathbf{N}}$. Let simply-connected region $D \subset \mathbb{R}^{2}$ be the interior of Γ. Let $\overrightarrow{\mathbf{F}} \in C^{(1,1)}(D)$. Then:

$$
\oint_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d s=\iint_{D} \nabla \cdot \overrightarrow{\mathbf{F}} d A
$$

PROOF: Let $\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle \& \Gamma: \overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t)\rangle, t \in[a, b]$. Then, $\left.\overrightarrow{\mathbf{T}}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \Longrightarrow \overrightarrow{\mathbf{T}}(t) \cdot \overrightarrow{\mathbf{N}} t\right)=0 \Longrightarrow \overrightarrow{\mathbf{N}}(t)=\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle$

$$
\Longrightarrow \widehat{\mathbf{N}} d s=\left(\frac{\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle}{\sqrt{\left[y^{\prime}(t)\right]^{2}+\left[-x^{\prime}(t)\right]^{2}}}\right)\left(\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t\right)=\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle d t
$$

$$
\therefore \oint_{\Gamma} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d s=\int_{q}^{b}\langle M(x, y), N(x, y)\rangle \cdot\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle d t
$$

$$
=\oint_{\Gamma}^{J}\langle M, N\rangle \cdot\langle d y,-d x\rangle=\oint_{\Gamma}(-N) d x+M d y
$$

$$
\begin{equation*}
\stackrel{\text { GREEN }}{=} \iint_{D}\left[\frac{\partial M}{\partial x}-\left(-\frac{\partial N}{\partial y}\right)\right] d A=\iint_{D} \nabla \cdot \overrightarrow{\mathbf{F}} d A \tag{QED}
\end{equation*}
$$

Using Gauss' Theorem with Open Surfaces

Consider the above open box with the top face removed. Without Gauss' Theorem:
$\iint_{S_{B o x}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=$
$\iint_{S_{\text {Botoom }}} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d S+\iint_{S_{\text {Left }}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S+\iint_{S_{\text {Right }}}$
$\overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S+\iint_{S_{\text {Frout }}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S+\iint_{S_{\text {Back }}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$
With Gauss' Theorem:
$\iint_{S_{B o x}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S=\iiint_{E_{B_{B o x}}} \nabla \cdot \overrightarrow{\mathbf{F}} d V-\iint_{S_{\text {Top }}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$

Generalizations of the FTC

THEOREM	FTC FORM OF THEOREM	REMARK(S)
FTC	$\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$	
FTLI	$\int_{C} \nabla f \cdot d \overrightarrow{\mathbf{R}}=f[\overrightarrow{\mathbf{R}}(b)]-f[\overrightarrow{\mathbf{R}}(a)]$	$C: \overrightarrow{\mathbf{R}}(t), a \leq t \leq b$
Green's Thm	$\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\oint_{\partial D} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$	$\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle$
Stokes' Thm	$\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S=\oint_{\partial S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$	$S \equiv$ open surface
Gauss' Thm	$\iiint_{E} \nabla \cdot \overrightarrow{\mathbf{F}} d V=\oiint_{\partial E} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$	$E \equiv$ closed surface
Gauss' Thm	$\iint_{D} \nabla \cdot \overrightarrow{\mathbf{F}} d A=\oint_{\partial D} \overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{N}} d s$	$\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle$

$\partial D \equiv$ Boundary curve of region D
$\partial S \equiv$ Boundary curve of surface S $\partial E \equiv$ Boundary surface of solid E

Fin.

