Vectors: Introduction

Calculus III

Josh Engwer

TTU

25 August 2014

Vectors & Scalars (Definition)

Definition

A vector $\vec{\mathbf{v}}$ is a quantity that bears both magnitude and direction.

Examples of vectors: displacement, velocity, force, angular momentum, ...

Definition

A **scalar** t is a quantity that bears **only magnitude**.

Examples of scalars: time, temperature, distance, speed, area, volume, ...

Josh Engwer (TTU) Vectors: Introduction 25 August 2014

Vector \mathbf{v} with horizontal component v_1 and vertical component v_2 :

Vector **PQ** with **initial point** *P* and **terminal point** *Q*:

$$\mathbf{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle \qquad \mathbf{Q}(x_2, y_2)$$

$$P(x_1, y_1)$$

Vector \mathbf{QP} with initial point Q and terminal point P:

$$\mathbf{QP} = \langle x_1 - x_2, y_1 - y_2 \rangle \qquad Q(x_2, y_2)$$

$$P(x_1, y_1)$$

2D Vector (Representation)

Component Form: $\mathbf{v} = \langle v_1, v_2 \rangle$

Basis Form: $\mathbf{v} = v_1 \hat{\mathbf{i}} + v_2 \hat{\mathbf{j}}$

 $\left[\text{Basis Vectors } \ \widehat{\mathbf{i}} := \langle 1, 0 \rangle, \widehat{\mathbf{j}} := \langle 0, 1 \rangle \ \right]$

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle \qquad (v_1, v_2, v_3)$$

$$(0, 0, 0)$$

$$\mathbf{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle Q(x_2, y_2, z_2)$$

$$P(x_1, y_1, z_1)$$

$$\mathbf{QP} = \langle x_1 - x_2, y_1 - y_2, z_1 - z_2 \rangle Q(x_2, y_2, z_2)$$

$$P(x_1, y_1, z_1)$$

3D Vector (Representation)

Component Form: $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$

Basis Form: $\mathbf{v} = v_1 \hat{\mathbf{i}} + v_2 \hat{\mathbf{j}} + v_3 \hat{\mathbf{k}}$

 $\left[\mathsf{Basis} \; \mathsf{Vectors} \; \; \widehat{\mathbf{i}} := \langle 1, 0, 0 \rangle, \widehat{\mathbf{j}} := \langle 0, 1, 0 \rangle, \widehat{\mathbf{k}} := \langle 0, 0, 1 \rangle \; \right]$

Vectors (Translation Invariance)

- Two vectors are equal ←⇒ their components are equal ←⇒ they both bear the same magnitude & same direction.
- Merely translating a vector (as illustrated above) does not change it.

Vector Algebra (Addition)

Vector Algebra (Addition)

Vector Algebra (Addition)

Vector Algebra (Scalar Multiplication)

Parallel Vectors (Definition)

Definition

Nonzero Vectors $\vec{\mathbf{v}}, \vec{\mathbf{w}}$ are **parallel** \iff $\vec{\mathbf{v}} \mid\mid \vec{\mathbf{w}} \iff \vec{\mathbf{v}} = k\vec{\mathbf{w}}$ for some $k \in \mathbb{R}$.

Vector Algebra (Operations)

Let vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ and scalar $k \in \mathbb{R}$. Then:

- $\bullet \mathbf{u} + \mathbf{v} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$
- $\bullet \mathbf{u} \mathbf{v} = \langle u_1, u_2 \rangle \langle v_1, v_2 \rangle = \langle u_1 v_1, u_2 v_2 \rangle$
- $k\mathbf{v} = k\langle v_1, v_2 \rangle = \langle kv_1, kv_2 \rangle$

Let vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ and scalar $k \in \mathbb{R}$. Then:

•
$$\mathbf{u} + \mathbf{v} = \langle u_1, u_2, u_3 \rangle + \langle v_1, v_2, v_3 \rangle = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

•
$$\mathbf{u} - \mathbf{v} = \langle u_1, u_2, u_3 \rangle - \langle v_1, v_2, v_3 \rangle = \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$$

•
$$k\mathbf{v} = k\langle v_1, v_2, v_3 \rangle = \langle kv_1, kv_2, kv_3 \rangle$$

Zero Vector:

- $\vec{\mathbf{0}} := \langle 0, 0 \rangle$
- $\vec{\mathbf{0}} := \langle 0, 0, 0 \rangle$

Vector Algebra (Properties)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \left\{ \mathbb{R}^2, \mathbb{R}^3 \right\}$ and scalars $s, t \in \mathbb{R}$. Then:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $(st)\mathbf{u} = s(t\mathbf{u}) = t(s\mathbf{u})$
- $\mathbf{u} + \vec{\mathbf{0}} = \mathbf{u}$
- $\mathbf{u} \mathbf{u} = \mathbf{u} + (-\mathbf{u}) = \vec{\mathbf{0}}$
- $(s+t)\mathbf{u} = s\mathbf{u} + t\mathbf{u}$

Vectors (Norm)

Definition

The **norm** of a 2D vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is defined to be

$$||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2}$$

Definition

The **norm** of a 3D vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is defined to be

$$||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2 + v_3^2}$$

Josh Engwer (TTU) Vectors: Introduction

Vectors (Norm)

Definition

The **norm** of a 2D vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is defined to be

$$||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2}$$

Definition

The **norm** of a 3D vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is defined to be

$$||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2 + v_3^2}$$

PROOF: Use Pythagorean's Theorem.

Josh Engwer (TTU)

Unit Vectors & Direction Vectors

Definition

A unit vector $\hat{\mathbf{v}}$ is a vector with norm one. A direction vector for vector \mathbf{v} is defined to be

$$\widehat{v}:=\frac{v}{||v||}$$

Fin

Fin.