Vectors: Dot Products \& Projections

Calculus III

Josh Engwer

TTU

26 August 2014

Dot Product (Definition)

Definition

Dot Product in \mathbb{R}^{2} :
The dot product of vectors $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and $\overrightarrow{\mathbf{w}}=\left\langle w_{1}, w_{2}\right\rangle$ is defined by:

$$
\mathbf{v} \cdot \mathbf{w}:=v_{1} w_{1}+v_{2} w_{2}
$$

Definition

Dot Product in \mathbb{R}^{3} :
The dot product of vectors $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\overrightarrow{\mathbf{w}}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ is defined by:

$$
\mathbf{v} \cdot \mathbf{w}:=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

REMARKS:

- Notice that the dot product $\mathbf{v} \cdot \mathbf{w}$ is a scalar.
- Going forward, the focus will be on 3-D vectors $\left(\right.$ e.g. $\left.\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\right)$

Dot Product (Properties)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ and scalar $c \in \mathbb{R}$. Then:

- $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
- $\overrightarrow{\mathbf{0}} \cdot \mathbf{v}=\mathbf{v} \cdot \overrightarrow{\mathbf{0}}=0$
- $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
- $c(\mathbf{v} \cdot \mathbf{w})=(c \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(c \mathbf{w})$
- $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$

Dot Product (Properties)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ and scalar $c \in \mathbb{R}$. Then:

- $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
- $\overrightarrow{\mathbf{0}} \cdot \mathbf{v}=\mathbf{v} \cdot \overrightarrow{\mathbf{0}}=0$
- $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
- $c(\mathbf{v} \cdot \mathbf{w})=(c \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(c \mathbf{w})$
- $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$

PROOF: Let $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then:
$\mathbf{v} \cdot \mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \cdot\left\langle v_{1}, v_{2}, v_{3}\right\rangle=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=\left(\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}\right)^{2}=\|\mathbf{v}\|^{2} \quad$ QED

Dot Product (Geometric Formula Derivation)

- Given vectors $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$.

Dot Product (Geometric Formula Derivation)

- Form vector $\mathbf{v}-\mathbf{w}=\left\langle v_{1}-w_{1}, v_{2}-w_{2}, v_{3}-w_{3}\right\rangle$.

Dot Product (Geometric Formula Derivation)

- Take norms of all three vectors and consider the resulting triangle.

Dot Product (Geometric Formula Derivation)

Trig Review: What result relates all three norms and the angle θ ??

Dot Product (Geometric Formula Derivation)

Law of Cosines: $\quad\|\mathbf{v}-\mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$

Dot Product (Geometric Formula Derivation)

Solve for the cosine term:
$\cos \theta=\frac{\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-\|\mathbf{v}-\mathbf{w}\|^{2}}{2\|\mathbf{v}\|\|\mathbf{w}\|}$

Dot Product (Geometric Formula Derivation)

Write all norms in the numerator in terms of vector components:

$$
\cos \theta=\frac{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+w_{1}^{2}+w_{2}^{2}+w_{3}^{2}-\left[\left(v_{1}-w_{1}\right)^{2}+\left(v_{2}-w_{2}\right)^{2}+\left(v_{3}-w_{3}\right)^{2}\right]}{2\|\mathbf{v}\|\|\mathbf{w}\|}
$$

Dot Product (Geometric Formula Derivation)

Simplify numerator:
$\cos \theta=\frac{2 v_{1} w_{1}+2 v_{2} w_{2}+2 v_{3} w_{3}}{2\|\mathbf{v}\|\|\mathbf{w}\|}$

Dot Product (Geometric Formula Derivation)

Simplify fraction:

$\cos \theta=\frac{v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}}{\|\mathbf{v}\|\|\mathbf{w}\|}$

Dot Product (Geometric Formula Derivation)

Realize that the numerator is a dot product:
$\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}|\|\mid \mathbf{w}\|}$

Dot Product (Geometric Formula Derivation)

Solve for the dot product:
$\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$

Dot Product (Coordinate-Free Definition)

Definition

Let θ be the smallest positive angle between vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$. Then:

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \quad \text { where } \theta \in[0, \pi]
$$

- Alternative notation for the angle between vectors $\mathbf{v}, \mathbf{w}: \theta_{v w}$

Dot Product (Orthogonality)

Theorem

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ are orthogonal $\Longleftrightarrow \mathbf{v} \perp \mathbf{w} \Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=0$

Dot Product (Orthogonality)

Theorem

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ are orthogonal $\Longleftrightarrow \mathbf{v} \perp \mathbf{w} \Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=0$

PROOF:

\mathbf{v}, \mathbf{w} are orthogonal $\Longleftrightarrow \theta=\pi / 2 \Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos (\pi / 2)=0 \quad$ QED

Dot Product (Geometric Interpretation)

θ is acute
$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathrm{v}}>0$

θ is 90°
$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$

θ is obtuse
$\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}<0$

Dot Product (Work)

Definition

The work, W, done by a constant force $\overrightarrow{\mathbf{F}}$ on an object displacing it by $\overrightarrow{\mathbf{d}}$ is:

$$
W:=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}}
$$

PROOF: Take Physics (Mechanics)

Dot Product (Work)

Definition

The work, W, done by a constant force $\overrightarrow{\mathbf{F}}$ on an object moving it from P to Q is:

$$
W:=\overrightarrow{\mathbf{F}} \cdot \mathbf{P Q}
$$

PROOF: Take Physics (Mechanics)

Projection (Example 1)

Project wonto v.

Projection (Example 1)

Project w onto \mathbf{v}.

Drop perpendicular line from \mathbf{w} to \mathbf{v}.

Projection (Example 1)

Project tonto \mathbf{v}.

Projection (Example 2)

Project \mathbf{v} onto \mathbf{w}.

Projection (Example 2)

Project \mathbf{v} onto w.

Drop perpendicular line from \mathbf{v} to \mathbf{w}.

Projection (Example 2)

Project \mathbf{v} onto \mathbf{w}.

Projection (Example 3)

Project wonto v.

Projection (Example 3)

Project wonto \mathbf{v}.

Draw line extension through \mathbf{v}.

Projection (Example 3)

Project wonto \mathbf{v}.

Drop perpendicular line from \mathbf{w} to line extension.

Projection (Example 3)

Project wonto \mathbf{v}.

Projection (Example 4)

Project u onto \mathbf{n}.

$\stackrel{n}{u}$

Projection (Example 4)

Project u onto \mathbf{n}.

Draw line extension through \mathbf{n}.

Projection (Example 4)

Project \mathbf{u} onto \mathbf{n}.

Drop perpendicular line from u to line extension.

Projection (Example 4)

Project u onto \mathbf{n}.

Projection (Formula Derivation)

Determine a formula for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$, the projection of vector \mathbf{v} onto vector \mathbf{w}.

Projection (Formula Derivation)

Determine a formula for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$, the projection of vector \mathbf{v} onto vector \mathbf{w}.

Notice that $\left(\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right) \| \mathbf{w} \Longrightarrow \operatorname{proj}_{\mathbf{w}} \mathbf{v}=k \mathbf{w}$, where $k \in \mathbb{R}$.

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Form vector $\mathbf{v}-k \mathbf{w}$.

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Notice that $(\mathbf{v}-k \mathbf{w}) \perp \mathbf{w}$.

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$\Longrightarrow(\mathbf{v}-k \mathbf{w}) \cdot \mathbf{w}=0$

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$\Longrightarrow \mathbf{v} \cdot \mathbf{w}-(k \mathbf{w}) \cdot \mathbf{w}=0$

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$$
\Longrightarrow \mathbf{v} \cdot \mathbf{w}-k(\mathbf{w} \cdot \mathbf{w})=0
$$

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$$
\Longrightarrow \mathbf{v} \cdot \mathbf{w}=k(\mathbf{w} \cdot \mathbf{w})
$$

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$\Longrightarrow k=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

Projection (Formula Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$\Longrightarrow k=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$
$\Longrightarrow \operatorname{proj}_{\mathbf{w}} \mathbf{v}=k \mathbf{w}=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}$

Projection (Formula)

Definition

The (vector) projection of vector \mathbf{v} onto vector \mathbf{w} is defined by:

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}:=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}
$$

Definition

The scalar projection of vector \mathbf{v} onto vector \mathbf{w} is defined by:

$$
\operatorname{comp}_{\mathbf{w}} \mathbf{v}:= \pm\left\|\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right\|
$$

The sign is positive if $\mathbf{v} \cdot \mathbf{w} \geq 0$ and negative if $\mathbf{v} \cdot \mathbf{w}<0$

REMARKS:

- "Projection" means "vector projection."
- l'll never say "scalar projection." Instead, l'll say "norm of the projection."
- I'll never write comp ${ }_{w} \mathbf{v}$. Instead, I'll write $\pm\left\|\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right\|$.

Fin.

