Vectors: Dot Products & Projections Calculus III

Josh Engwer

TTU

26 August 2014

Dot Product (Definition)

Definition

Dot Product in \mathbb{R}^2 :

The **dot product** of vectors $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and $\vec{\mathbf{w}} = \langle w_1, w_2 \rangle$ is defined by:

$$\mathbf{v} \cdot \mathbf{w} := v_1 w_1 + v_2 w_2$$

Definition

Dot Product in \mathbb{R}^3 :

The **dot product** of vectors $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$ and $\vec{\mathbf{w}} = \langle w_1, w_2, w_3 \rangle$ is defined by:

$$\mathbf{v} \cdot \mathbf{w} := v_1 w_1 + v_2 w_2 + v_3 w_3$$

REMARKS:

- Notice that the dot product $\mathbf{v} \cdot \mathbf{w}$ is a **scalar**.
- Going forward, the focus will be on **3-D vectors** $\left(\text{e.g. } \mathbf{v} = \langle v_1, v_2, v_3 \rangle \right)$

Dot Product (Properties)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ and scalar $c \in \mathbb{R}$. Then:

$$v \cdot \mathbf{v} = ||\mathbf{v}||^2$$

$$\vec{\mathbf{0}} \cdot \mathbf{v} = \mathbf{v} \cdot \vec{\mathbf{0}} = 0$$

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$

$$c(\mathbf{v} \cdot \mathbf{w}) = (c\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (c\mathbf{w})$$

$$\bullet \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

Dot Product (Properties)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ and scalar $c \in \mathbb{R}$. Then:

- $v \cdot \mathbf{v} = ||\mathbf{v}||^2$
- $\vec{\mathbf{0}} \cdot \mathbf{v} = \mathbf{v} \cdot \vec{\mathbf{0}} = 0$
- $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- $c(\mathbf{v} \cdot \mathbf{w}) = (c\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (c\mathbf{w})$
- $\bullet \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

PROOF: Let $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$. Then:

$$\overline{\mathbf{v} \cdot \mathbf{v}} = \langle v_1, v_2, v_3 \rangle \cdot \langle v_1, v_2, v_3 \rangle = v_1^2 + v_2^2 + v_3^2 = \left(\sqrt{v_1^2 + v_2^2 + v_3^2}\right)^2 = ||\mathbf{v}||^2 \quad \text{QED}$$

• Given vectors $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$.

• Form vector $\mathbf{v} - \mathbf{w} = \langle v_1 - w_1, v_2 - w_2, v_3 - w_3 \rangle$.

Take norms of all three vectors and consider the resulting triangle.

Trig Review: What result relates all three norms and the angle θ ??

Law of Cosines: $||\mathbf{v} - \mathbf{w}||^2 = ||\mathbf{v}||^2 + ||\mathbf{w}||^2 - 2||\mathbf{v}|| ||\mathbf{w}|| \cos \theta$

Solve for the cosine term:

$$\cos\theta = \frac{||\mathbf{v}||^2 + ||\mathbf{w}||^2 - ||\mathbf{v} - \mathbf{w}||^2}{2||\mathbf{v}||||\mathbf{w}||}$$

Write all norms in the numerator in terms of vector components:

$$\cos\theta = \frac{v_1^2 + v_2^2 + v_3^2 + w_1^2 + w_2^2 + w_3^2 - \left[(v_1 - w_1)^2 + (v_2 - w_2)^2 + (v_3 - w_3)^2 \right]}{2||\mathbf{v}||||\mathbf{w}||}$$

Simplify numerator:

$$\cos \theta = \frac{2v_1w_1 + 2v_2w_2 + 2v_3w_3}{2||\mathbf{v}|||\mathbf{w}||}$$

Simplify fraction:

$$\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{||\mathbf{v}|| ||\mathbf{w}||}$$

Realize that the numerator is a dot product:

$$\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}||||\mathbf{w}|}$$

Solve for the dot product:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos \theta$$

Dot Product (Coordinate-Free Definition)

Definition

Let θ be the smallest positive angle between vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$. Then:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos \theta$$
 where $\theta \in [0, \pi]$

Alternative notation for the angle between vectors $\mathbf{v}, \mathbf{w} : \theta_{vw}$

Dot Product (Orthogonality)

Theorem

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ are orthogonal $\iff \mathbf{v} \perp \mathbf{w} \iff \mathbf{v} \cdot \mathbf{w} = 0$

Dot Product (Orthogonality)

Theorem

 $\textit{Vectors} \ \mathbf{v}, \mathbf{w} \in \mathbb{R}^3 \ \textit{are} \ \textit{orthogonal} \iff \mathbf{v} \perp \mathbf{w} \iff \mathbf{v} \cdot \mathbf{w} = 0$

PROOF:

 \mathbf{v}, \mathbf{w} are **orthogonal** $\iff \theta = \pi/2 \iff \mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos(\pi/2) = 0$ QED

Dot Product (Geometric Interpretation)

 θ is acute $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} > 0$

 $\theta \text{ is } 90^{\circ}$ $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$

 θ is obtuse $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} < 0$

Dot Product (Work)

Definition

The **work**, W, done by a constant force $\vec{\mathbf{F}}$ on an object displacing it by $\vec{\mathbf{d}}$ is:

$$W := \vec{\mathbf{F}} \cdot \vec{\mathbf{d}}$$

PROOF: Take Physics (Mechanics)

Dot Product (Work)

Definition

The **work**, W, done by a constant force $\vec{\mathbf{F}}$ on an object moving it from P to Q is:

$$W := \vec{\mathbf{F}} \cdot \mathbf{PQ}$$

PROOF: Take Physics (Mechanics)

Project w onto v.

Project w onto v.

Drop perpendicular line from w to v.

Project w onto v.

Project v onto w.

Project v onto w.

Drop perpendicular line from v to w.

Project v onto w.

Project w onto v.

Project w onto v.

Draw line extension through \mathbf{v} .

Project w onto v.

Drop perpendicular line from \mathbf{w} to line extension.

Project w onto v.

Project u onto n.

Project u onto n.

Draw line extension through n.

Project u onto n.

Drop perpendicular line from **u** to line extension.

Project \mathbf{u} onto \mathbf{n} .

Determine a formula for $\text{proj}_w v$, the **projection** of vector v onto vector w.

Determine a formula for $proj_w v$, the **projection** of vector v onto vector w.

Notice that $(\operatorname{proj}_{\mathbf{w}}\mathbf{v}) \mid \mid \mathbf{w} \implies \operatorname{proj}_{\mathbf{w}}\mathbf{v} = k\mathbf{w}$, where $k \in \mathbb{R}$.

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Form vector $\mathbf{v} - k\mathbf{w}$.

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Notice that $(\mathbf{v} - k\mathbf{w}) \perp \mathbf{w}$.

$$\implies (\mathbf{v} - k\mathbf{w}) \cdot \mathbf{w} = 0$$

$$\implies \mathbf{v} \cdot \mathbf{w} - (k\mathbf{w}) \cdot \mathbf{w} = 0$$

$$\implies \mathbf{v} \cdot \mathbf{w} - k(\mathbf{w} \cdot \mathbf{w}) = 0$$

$$\implies \mathbf{v} \cdot \mathbf{w} = k(\mathbf{w} \cdot \mathbf{w})$$

$$\implies k = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$

$$\implies k = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$

$$\implies \mathsf{proj}_{\mathbf{w}} \mathbf{v} = k \mathbf{w} = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}$$

Projection (Formula)

Definition

The **(vector) projection** of vector **v** onto vector **w** is defined by:

$$\text{proj}_w v := \left(\frac{v \cdot w}{w \cdot w}\right) w$$

Definition

The **scalar projection** of vector \mathbf{v} onto vector \mathbf{w} is defined by:

$$comp_w v := \pm ||proj_w v||$$

The sign is **positive** if $\mathbf{v} \cdot \mathbf{w} \ge 0$ and **negative** if $\mathbf{v} \cdot \mathbf{w} < 0$

REMARKS:

- "Projection" means "vector projection."
- I'll never say "scalar projection." Instead, I'll say "norm of the projection."
- I'll never write $comp_w v$. Instead, I'll write $\pm ||proj_w v||$.

Fin

Fin.