Parametric Curves, Lines in Space

Josh Engwer

TTU

02 September 2014

Josh Engwer (TTU)

PART I: 2D PARAMETRIC CURVES

Parametric Curves in \mathbb{R}^2 (Introduction)

Definition

A 2D parametric curve has the following form:

$$\begin{cases} x = f(t) \\ y = g(t) \\ t \in I \end{cases}$$
, where I is an interval $f, g \in C(I)$

Each point (x, y) on the curve depends on a **parameter**, $t \in \mathbb{R}$. A particular choice of functions f, g and interval I is called a **parameterization** of the curve.

ALTERNATIVE NOTATION:

 $\begin{cases} x(t) = f(t) \\ y(t) = g(t) \\ t \in I \end{cases}$ is used to emphasize that *x* and *y* are functions of *t*.

ALTERNATIVE NOTATION: $x = f(t), y = g(t), t \in I$

REMARK:

The " $t \in I$ " piece is omitted when $t \in Dom(f) \cap Dom(g)$

Parametric Curves in \mathbb{R}^2 (Introduction)

(DEMO) PARAMETRIC CURVES (Click below):

Parametric Curves (Parameterizations are not Unique)

(DEMO) COMPARING PARAMETERIZATIONS (Click below):

REMARK: Focus on choosing simplest parameterization (see next slide).

Josh Engwer (TTU)

Parametric Curves in \mathbb{R}^2 (Conversions)

CONVERSION	PROCEDURE
2D Parametric \rightarrow Rectangular	Solve for <i>t</i> in one eqn and substitute into the other eqn. Restrict the ranges of <i>x</i> & <i>y</i> if necessary.
Explicit Rectangular \rightarrow 2D Parametric	$y = f(x) \implies \begin{cases} x = t \\ y = f(t) \\ t \in Dom(f) \end{cases}$
Explicit Rectangular \rightarrow 2D Parametric	$x = g(y) \implies \begin{cases} x = g(t) \\ y = t \\ t \in Dom(g) \end{cases}$
Explicit Polar \rightarrow 2D Parametric	$r = f(\theta) \implies \begin{cases} x = f(t) \cos t \\ y = f(t) \sin t \\ t \in Dom(f) \end{cases}$

*** ALL OTHER CONVERSION POSSIBILITIES ARE TOO DIFFICULT ***

Definition

A 3D parametric curve has the following form:

$$\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \\ t \in I \end{cases}$$
, where I is an interval $f, g, h \in C(I)$

Each point (x, y, z) on the curve depends on a **parameter**, $t \in \mathbb{R}$. A particular choice of functions f, g, h and interval I is called a **parameterization** of the curve.

REMARK:

General 3D parametric curves will be treated in Chapter 10. For now, consider only **3D lines in space**.

PART II: LINES IN SPACE

Recall from Algebra the following canonical forms of a line on the *xy*-plane:

TYPE	CANONICAL FORM	REMARK(s)
Point-Slope Form	$y - y_0 = m(x - x_0)$	$m \equiv$ Slope of Line
		Line contains point (x_0, y_0)
Slopo-Intercent Form	y = mx + b	$m \equiv$ Slope of Line
Siope-Intercept Form		$b \equiv y$ -Intercept : $(0, b)$
Both-Intercepts Form $\frac{x}{a} + \frac{y}{b} = 1$	$m \equiv$ Slope of Line	
	$\frac{x}{a} + \frac{y}{b} = 1$	$a \equiv x$ -Intercept : $(a, 0)$
	a b	$b \equiv y$ -Intercept : $(0, b)$
General Form	Ax + By = C	$A,B,C\in\mathbb{R}$

Recall from Algebra the following canonical forms of a line on the *xy*-plane:

TYPE	CANONICAL FORM	REMARK(s)
Point-Slope Form	$y - y_0 = m(x - x_0)$	$m \equiv$ Slope of Line
		Line contains point (x_0, y_0)
Slopo-Intercent Form	y = mx + b	$m \equiv$ Slope of Line
Siope-Intercept Form		$b \equiv y$ -Intercept : $(0, b)$
Both-Intercepts Form $\frac{x}{a} + \frac{y}{b} = 1$	$m \equiv$ Slope of Line	
	$\frac{x}{a} + \frac{y}{b} = 1$	$a \equiv x$ -Intercept : $(a, 0)$
	a b	$b \equiv y$ -Intercept : $(0, b)$
General Form	Ax + By = C	$A,B,C\in\mathbb{R}$

• Unfortunately, none of these forms are useful for lines in space.

Recall from Algebra the following canonical forms of a line on the *xy*-plane:

TYPE	CANONICAL FORM	REMARK(s)
Point-Slope Form	$y - y_0 = m(x - x_0)$	$m \equiv$ Slope of Line
		Line contains point (x_0, y_0)
Slopo-Intercent Form	y = mx + b	$m \equiv$ Slope of Line
Siope-Intercept Form		$b \equiv y$ -Intercept : $(0, b)$
Both-Intercepts Form $\frac{x}{a} + \frac{y}{b} = 1$	$m \equiv$ Slope of Line	
	$\frac{x}{x} + \frac{y}{h} = 1$	$a \equiv x$ -Intercept : $(a, 0)$
	a b	$b \equiv y$ -Intercept : $(0, b)$
General Form	Ax + By = C	$A,B,C\in\mathbb{R}$

- Unfortunately, none of these forms are useful for lines in space.
- The solution: Use Vectors!

Given line $\ell \mid \mid$ vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and containing point $P(x_0, y_0)$

Let Q(x, y) be any point on line ℓ .

Given line $\ell \mid \mid$ vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and containing point $P(x_0, y_0)$

Form vector
$$\mathbf{PQ} = \langle x - x_0, y - y_0 \rangle$$
.

Josh Engwer (TTU)

Given line $\ell \mid \mid$ vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and containing point $P(x_0, y_0)$

Notice that PQ || v

Josh Engwer (TTU)

Given line $\ell \mid\mid$ vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and containing point $P(x_0, y_0)$

$$\mathbf{PQ} \mid\mid \mathbf{v} \implies \langle x - x_0, y - y_0 \rangle = t \langle v_1, v_2 \rangle$$

Given line $\ell \mid\mid$ vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and containing point $P(x_0, y_0)$

$$\mathbf{PQ} \mid\mid \mathbf{v} \implies \langle x - x_0, y - y_0 \rangle = t \langle v_1, v_2 \rangle \implies \langle x - x_0, y - y_0 \rangle = \langle tv_1, tv_2 \rangle$$

Given line $\ell \mid\mid$ vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and containing point $P(x_0, y_0)$

$$\mathbf{PQ} \mid\mid \mathbf{v} \implies \langle x - x_0, y - y_0 \rangle = t \langle v_1, v_2 \rangle \implies \langle x - x_0, y - y_0 \rangle = \langle tv_1, tv_2 \rangle$$

Equate each component:
$$\begin{cases} x - x_0 = tv_1 \\ y - y_0 = tv_2 \end{cases}$$

Given line $\ell \mid \mid$ vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ and containing point $P(x_0, y_0)$

$$\begin{aligned} \mathbf{PQ} \mid\mid \mathbf{v} \implies \langle x - x_0, y - y_0 \rangle &= t \langle v_1, v_2 \rangle \implies \langle x - x_0, y - y_0 \rangle = \langle tv_1, tv_2 \rangle \\ & \text{Equate each component:} \begin{cases} x - x_0 = tv_1 \\ y - y_0 = tv_2 \end{cases} \\ & \text{Solve for } (x, y) \text{:} \end{cases} \begin{cases} x = x_0 + tv_1 \\ y = y_0 + tv_2 \end{cases} \end{aligned}$$

Lines in \mathbb{R}^2 (Parametric Form)

Definition

The **parametric form of line** ℓ containing point $P_0(x_0, y_0)$ and parallel to vector $\vec{\mathbf{v}} = \langle v_1, v_2 \rangle$ is:

$$\ell: \left\{ \begin{array}{l} x = x_0 + v_1 t \\ y = y_0 + v_2 t \\ t \in \mathbb{R} \end{array} \right.$$

Lines in \mathbb{R}^3 (Parametric Form)

Definition

The **parametric form of line** ℓ containing point $P_0(x_0, y_0, z_0)$ and parallel to vector $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$ is:

$$\ell: \begin{cases} x = x_0 + v_1 t \\ y = y_0 + v_2 t \\ z = z_0 + v_3 t \\ t \in \mathbb{R} \end{cases}$$

Lines in \mathbb{R}^3 (Intersecting Lines)

Lines in \mathbb{R}^3 (Parallel Lines)

Lines in \mathbb{R}^3 (Coincident Lines)

Lines in \mathbb{R}^3 (Skew Lines)

• The dashed line segment indicates that line ℓ_2 is behind line ℓ_1 .

Lines in \mathbb{R}^3 (Classification Flowchart)

$$\sin \theta = \frac{d}{||\mathbf{QP}||}$$

Find the shortest distance from point *P* to line ℓ .

 $d = ||\mathbf{QP}|| \sin \theta$

Find the shortest distance from point *P* to line ℓ .

$d||\mathbf{v}|| = ||\mathbf{v}||||\mathbf{QP}||\sin\theta$

Find the shortest distance from point *P* to line ℓ .

$$d||\mathbf{v}|| = ||\mathbf{v} \times \mathbf{QP}||$$

Josh Engwer (TTU)

$$d = \frac{||\mathbf{v} \times \mathbf{QP}||}{||\mathbf{v}||}$$

Theorem

The shortest distance, d, from point P to line ℓ is:

$$d = \frac{||\mathbf{v} \times \mathbf{Q}\mathbf{P}||}{||\mathbf{v}||}$$

where Q is any point on line ℓ , and v is any vector parallel to line ℓ .

Josh Engwer (TTU)

Fin.