# Parametric Curves, Lines in Space 

 Calculus IIIJosh Engwer

TTU

02 September 2014

## PART I:

## 2D PARAMETRIC CURVES

## Parametric Curves in $\mathbb{R}^{2}$ (Introduction)

## Definition

A 2D parametric curve has the following form:

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t) \\
t \in I
\end{array}, \text { where } \quad \begin{array}{l}
I \text { is an interval } \\
f, g \in C(I)
\end{array}\right.
$$

Each point $(x, y)$ on the curve depends on a parameter, $t \in \mathbb{R}$.
A particular choice of functions $f, g$ and interval $I$ is called a parameterization of the curve.

ALTERNATIVE NOTATION:
$\left\{\begin{array}{l}x(t)=f(t) \\ y(t)=g(t) \\ t \in I\end{array}\right.$
is used to emphasize that $x$ and $y$ are functions of $t$.

ALTERNATIVE NOTATION: $x=f(t), y=g(t), \quad t \in I$
REMARK:
The " $t \in I$ " piece is omitted when $t \in \operatorname{Dom}(f) \cap \operatorname{Dom}(g)$

## Parametric Curves in $\mathbb{R}^{2}$ (Introduction)

(DEMO) PARAMETRIC CURVES (Click below):


## Parametric Curves (Parameterizations are not Unique)

(DEMO) COMPARING PARAMETERIZATIONS (Click below):


REMARK: Focus on choosing simplest parameterization (see next slide).

## Parametric Curves in $\mathbb{R}^{2}$ (Conversions)

| CONVERSION | PROCEDURE |
| :--- | :--- |
| 2D Parametric $\rightarrow$ Rectangular | Solve for $t$ in one eqn <br> and substitute into the other eqn. <br> Restrict the ranges of $x \& y$ <br> if necessary. |
| Explicit Rectangular $\rightarrow$ 2D Parametric | $y=f(x) \Longrightarrow\left\{\begin{array}{l}x=t \\ y=f(t) \\ t \in \operatorname{Dom}(f)\end{array}\right.$ |
| Explicit Rectangular $\rightarrow$ 2D Parametric | $x=g(y) \Longrightarrow\left\{\begin{array}{l}x=g(t) \\ y=t \\ t \in \operatorname{Dom}(g)\end{array}\right.$ |
| Explicit Polar $\rightarrow$ 2D Parametric | $r=f(\theta) \Longrightarrow\left\{\begin{array}{l}x=f(t) \cos t \\ y=f(t) \sin t \\ t \in \operatorname{Dom}(f)\end{array}\right.$ |

## *** ALL OTHER CONVERSION POSSIBILITIES ARE TOO DIFFICULT ***

## Parametric Curves in $\mathbb{R}^{3}$ (Introduction)

## Definition

A 3D parametric curve has the following form:

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t) \\
z=h(t) \\
t \in I
\end{array}, \text { where } \quad \begin{array}{l}
I \text { is an interval } \\
f, g, h \in C(I)
\end{array}\right.
$$

Each point $(x, y, z)$ on the curve depends on a parameter, $t \in \mathbb{R}$. A particular choice of functions $f, g, h$ and interval $I$ is called a parameterization of the curve.

REMARK:
General 3D parametric curves will be treated in Chapter 10. For now, consider only 3D lines in space.

## PART II

## PART II: <br> LINES IN SPACE

## Lines in $\mathbb{R}^{2}$ (Canonical Forms from Algebra)

Recall from Algebra the following canonical forms of a line on the $x y$-plane:

| TYPE | CANONICAL FORM | REMARK(s) |
| :---: | :---: | :---: |
| Point-Slope Form | $y-y_{0}=m\left(x-x_{0}\right)$ | $m \equiv$ Slope of Line <br> Line contains point $\left(x_{0}, y_{0}\right)$ |
| Slope-Intercept Form | $y=m x+b$ | $m \equiv$ Slope of Line <br> $b \equiv y$-Intercept : $(0, b)$ |
| Both-Intercepts Form | $\frac{x}{a}+\frac{y}{b}=1$ | $m \equiv$ Slope of Line <br> $a \equiv x$-Intercept $:(a, 0)$ <br> $b \equiv y$-Intercept $:(0, b)$ |
| General Form | $A x+B y=C$ | $A, B, C \in \mathbb{R}$ |

## Lines in $\mathbb{R}^{2}$ (Canonical Forms from Algebra)

Recall from Algebra the following canonical forms of a line on the $x y$-plane:

| TYPE | CANONICAL FORM | REMARK(s) |
| :---: | :---: | :---: |
| Point-Slope Form | $y-y_{0}=m\left(x-x_{0}\right)$ | $m \equiv$ Slope of Line <br> Line contains point $\left(x_{0}, y_{0}\right)$ |
| Slope-Intercept Form | $y=m x+b$ | $m \equiv$ Slope of Line <br> $b \equiv y$-Intercept : $(0, b)$ |
| Both-Intercepts Form | $\frac{x}{a}+\frac{y}{b}=1$ | $m \equiv$ Slope of Line <br> $a \equiv x$-Intercept $:(a, 0)$ <br> $b \equiv y$-Intercept $:(0, b)$ |
| General Form | $A x+B y=C$ | $A, B, C \in \mathbb{R}$ |

- Unfortunately, none of these forms are useful for lines in space.


## Lines in $\mathbb{R}^{2}$ (Canonical Forms from Algebra)

Recall from Algebra the following canonical forms of a line on the $x y$-plane:

| TYPE | CANONICAL FORM | REMARK(s) |
| :---: | :---: | :---: |
| Point-Slope Form | $y-y_{0}=m\left(x-x_{0}\right)$ | $m \equiv$ Slope of Line <br> Line contains point $\left(x_{0}, y_{0}\right)$ |
| Slope-Intercept Form | $y=m x+b$ | $m \equiv$ Slope of Line <br> $b \equiv y$-Intercept $:(0, b)$ |
| Both-Intercepts Form | $\frac{x}{a}+\frac{y}{b}=1$ | $m \equiv$ Slope of Line <br> $a \equiv x$-Intercept $:(a, 0)$ <br> $b \equiv y$-Intercept $:(0, b)$ |
| General Form | $A x+B y=C$ | $A, B, C \in \mathbb{R}$ |

- Unfortunately, none of these forms are useful for lines in space.
- The solution: Use Vectors!


## Lines (Parametric Form Derivation)

Given line $\ell \|$ vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and containing point $P\left(x_{0}, y_{0}\right)$


Let $Q(x, y)$ be any point on line $\ell$.

## Lines (Parametric Form Derivation)

Given line $\ell \|$ vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and containing point $P\left(x_{0}, y_{0}\right)$


Form vector $\mathbf{P Q}=\left\langle x-x_{0}, y-y_{0}\right\rangle$.

## Lines (Parametric Form Derivation)

Given line $\ell \|$ vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and containing point $P\left(x_{0}, y_{0}\right)$


Notice that $\mathbf{P Q} \| \mathbf{v}$

## Lines (Parametric Form Derivation)

Given line $\ell \|$ vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and containing point $P\left(x_{0}, y_{0}\right)$


## Lines (Parametric Form Derivation)

Given line $\ell \|$ vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and containing point $P\left(x_{0}, y_{0}\right)$


$$
\mathbf{P Q} \| \mathbf{v} \Longrightarrow\left\langle x-x_{0}, y-y_{0}\right\rangle=t\left\langle v_{1}, v_{2}\right\rangle \Longrightarrow\left\langle x-x_{0}, y-y_{0}\right\rangle=\left\langle t v_{1}, t v_{2}\right\rangle
$$

## Lines (Parametric Form Derivation)

Given line $\ell \|$ vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and containing point $P\left(x_{0}, y_{0}\right)$


$$
\begin{aligned}
& \mathbf{P Q} \| \mathbf{v} \Longrightarrow\left\langle x-x_{0}, y-y_{0}\right\rangle=t\left\langle v_{1}, v_{2}\right\rangle \Longrightarrow\left\langle x-x_{0}, y-y_{0}\right\rangle=\left\langle t v_{1}, t v_{2}\right\rangle \\
& \text { Equate each component: }\left\{\begin{array}{l}
x-x_{0}=t v_{1} \\
y-y_{0}=t v_{2}
\end{array}\right.
\end{aligned}
$$

## Lines (Parametric Form Derivation)

Given line $\ell \|$ vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ and containing point $P\left(x_{0}, y_{0}\right)$

$\mathbf{P Q} \| \mathbf{v} \Longrightarrow\left\langle x-x_{0}, y-y_{0}\right\rangle=t\left\langle v_{1}, v_{2}\right\rangle \Longrightarrow\left\langle x-x_{0}, y-y_{0}\right\rangle=\left\langle t v_{1}, t v_{2}\right\rangle$
Equate each component: $\left\{\begin{array}{l}x-x_{0}=t v_{1} \\ y-y_{0}=t v_{2}\end{array}\right.$
Solve for $(x, y):\left\{\begin{array}{l}x=x_{0}+t v_{1} \\ y=y_{0}+t v_{2}\end{array}\right.$

## Lines in $\mathbb{R}^{2}$ (Parametric Form)



## Definition

The parametric form of line $\ell$ containing point $P_{0}\left(x_{0}, y_{0}\right)$ and parallel to vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}\right\rangle$ is:

$$
\ell:\left\{\begin{array}{l}
x=x_{0}+v_{1} t \\
y=y_{0}+v_{2} t \\
t \in \mathbb{R}
\end{array}\right.
$$

## Lines in $\mathbb{R}^{3}$ (Parametric Form)



## Definition

The parametric form of line $\ell$ containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to vector $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is:

$$
\ell:\left\{\begin{array}{l}
x=x_{0}+v_{1} t \\
y=y_{0}+v_{2} t \\
z=z_{0}+v_{3} t \\
t \in \mathbb{R}
\end{array}\right.
$$

## Lines in $\mathbb{R}^{3}$ (Intersecting Lines)



## Lines in $\mathbb{R}^{3}$ (Parallel Lines)



## Lines in $\mathbb{R}^{3}$ (Coincident Lines)

$$
\longrightarrow \ell_{1}, \ell_{2}
$$

## Lines in $\mathbb{R}^{3}$ (Skew Lines)



- The dashed line segment indicates that line $\ell_{2}$ is behind line $\ell_{1}$.


## Lines in $\mathbb{R}^{3}$ (Classification Flowchart)



## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.

$$
P
$$

## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


$$
\sin \theta=\frac{d}{\|\mathbf{Q P}\|}
$$

## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


$$
d=\|\mathbf{Q P}\| \sin \theta
$$

## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


$$
d\|\mathbf{v}\|=\|\mathbf{v}\|\|\mathbf{Q P}\| \sin \theta
$$

## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


$$
d\|\mathbf{v}\|=\|\mathbf{v} \times \mathbf{Q P}\|
$$

## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line Derivation)

Find the shortest distance from point $P$ to line $\ell$.


$$
d=\frac{\|\mathbf{v} \times \mathbf{Q P}\|}{\|\mathbf{v}\|}
$$

## Lines in $\mathbb{R}^{3}$ (Distance from Point to Line)



## Theorem

The shortest distance, $d$, from point $P$ to line $\ell$ is:

$$
d=\frac{\|\mathbf{v} \times \mathbf{Q P}\|}{\|\mathbf{v}\|}
$$

where $Q$ is any point on line $\ell$, and $\mathbf{v}$ is any vector parallel to line $\ell$.

## Fin.

