Planes in Space

Calculus III

Josh Engwer

TTU

05 September 2014

Special Planes (Coordinate Planes)

- Mnemonic Device: (missing variable) $=0$

Special Planes (Coordinate Planes)

- Mnemonic Device: (missing variable) $=0$

Special Planes (Coordinate Planes)

- Mnemonic Device: (missing variable) $=0$

Equations of Planes (Definition)

Definition

The standard form of a plane is:

$$
A x+B y+C z+D=0
$$

where $A, B, C, D \in \mathbb{R}$.

Equations of Planes (CASE I)

Given plane with normal vector $\overrightarrow{\mathbf{n}}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ \& containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

Equation of Plane: $A x+B y+C z+D=0$

Equations of Planes (CASE I)

Given plane with normal vector $\overrightarrow{\mathbf{n}}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ \& containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

Equation of Plane: $n_{1} x+n_{2} y+n_{3} z+D=0$

Let components of normal vector $\overrightarrow{\mathbf{n}}$ be the coefficients of x, y, z.

Equations of Planes (CASE I)

Given plane with normal vector $\overrightarrow{\mathbf{n}}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ \& containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

Equation of Plane: $n_{1} x+n_{2} y+n_{3} z+D=0$

Substitute given point $\left(x_{0}, y_{0}, z_{0}\right)$ into x, y, z respectively:

$$
n_{1} x_{0}+n_{2} y_{0}+n_{3} z_{0}+D=0
$$

Equations of Planes (CASE I)

Given plane with normal vector $\overrightarrow{\mathbf{n}}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ \& containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

Equation of Plane: $n_{1} x+n_{2} y+n_{3} z+\left(-n_{1} x_{0}-n_{2} y_{0}-n_{3} z_{0}\right)=0$

Solve the resulting equation for $D: \quad D=-n_{1} x_{0}-n_{2} y_{0}-n_{3} z_{0}$

Equations of Planes (CASE I)

Given plane with normal vector $\overrightarrow{\mathbf{n}}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ \& containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

Equation of Plane: $n_{1}\left(x-x_{0}\right)+n_{2}\left(y-y_{0}\right)+n_{3}\left(z-z_{0}\right)=0$

Group terms.

Equations of Planes (CASE I)

Proposition

Equation of plane with normal vector $\overrightarrow{\mathbf{n}}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ and containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is:

$$
n_{1}\left(x-x_{0}\right)+n_{2}\left(y-y_{0}\right)+n_{3}\left(z-z_{0}\right)=0
$$

Equations of Planes (CASE II)

Given a plane containing three noncollinear points P, Q, R.

Equations of Planes (CASE II)

Given a plane containing three noncollinear points P, Q, R.

Form vectors PQ and PR.

Equations of Planes (CASE II)

Given a plane containing three noncollinear points P, Q, R.

Form normal vector $\overrightarrow{\mathbf{n}}$ using a cross product: $\overrightarrow{\mathbf{n}}=\mathbf{P Q} \times \mathbf{P R}$

Equations of Planes (CASE II)

Given a plane containing three noncollinear points P, Q, R.

Using normal vector $\overrightarrow{\mathbf{n}}$ and one of the three given points P, Q, R, follow CASE I.

Equations of Planes (CASE III)

Given a plane containing intersecting lines ℓ_{1}, ℓ_{2}.

Equations of Planes (CASE III)

Given a plane containing intersecting lines ℓ_{1}, ℓ_{2}.

Form vectors $\overrightarrow{\mathbf{w}}$ and $\overrightarrow{\mathbf{v}}$ parallel to lines ℓ_{1} and ℓ_{2} respectively.

Equations of Planes (CASE III)

Given a plane containing intersecting lines ℓ_{1}, ℓ_{2}.

Form normal vector $\overrightarrow{\mathbf{n}}$ using a cross product: $\overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$

Equations of Planes (CASE III)

Given a plane containing intersecting lines ℓ_{1}, ℓ_{2}.

Pick any (simple) point P on either line ℓ_{1} or ℓ_{2}.

Equations of Planes (CASE III)

Given a plane containing intersecting lines ℓ_{1}, ℓ_{2}.

Using normal vector $\overrightarrow{\mathbf{n}}$ and point P, follow CASE I.

Line Orthogonal to a Plane (PART 1)

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $A x+B y+C z+D=0$

Line Orthogonal to a Plane (PART 1)

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $A x+B y+C z+D=0$

Extract normal vector from plane: $\overrightarrow{\mathbf{n}}=\langle A, B, C\rangle$.

Line Orthogonal to a Plane (PART 1)

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $A x+B y+C z+D=0$ Find an equation for the line ℓ.

Notice that line ℓ is parallel to normal vector $\overrightarrow{\mathbf{n}}$.

Line Orthogonal to a Plane (PART 1)

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $A x+B y+C z+D=0$
Find an equation for the line ℓ.

Equation of line ℓ containing point P_{0} and orthogonal to plane is:

$$
\left\{\begin{array}{l}
x=x_{0}+A t \\
y=y_{0}+B t \\
z=z_{0}+C t \\
t \in \mathbb{R}
\end{array}\right.
$$

Line Orthogonal to a Plane (PART 1)

Proposition

Equation of line ℓ containing point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and orthogonal to plane $A x+B y+C z+D=0$ is:

$$
\left\{\begin{array}{l}
x=x_{0}+A t \\
y=y_{0}+B t \\
z=z_{0}+C t \\
t \in \mathbb{R}
\end{array}\right.
$$

Line Orthogonal to a Plane (PART 2)

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $A x+B y+C z+D=0$ Find the point of intersection of the line \& plane.

Equation of line ℓ containing point P_{0} and orthogonal to plane is:

$$
\left\{\begin{array}{l}
x=x_{0}+A t \\
y=y_{0}+B t \\
z=z_{0}+C t \\
t \in \mathbb{R}
\end{array}\right.
$$

Line Orthogonal to a Plane (PART 2)

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $A x+B y+C z+D=0$
Find the point of intersection of the line \& plane.

Substitute equation of line ℓ into equation of plane, then solve for parameter t.

Line Orthogonal to a Plane (PART 2)

Given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and plane $A x+B y+C z+D=0$ Find the point of intersection of the line \& plane.

Plug value of t into equation of line ℓ to determine point Q where the line intersects plane.

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

- P

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Extract normal vector from the plane: $\overrightarrow{\mathbf{n}}=\langle A, B, C\rangle$

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Pick any (simple) point Q on the plane.

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Form vector $\mathbf{Q P}$.

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Form right triangle.

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

$$
\|\overrightarrow{\mathbf{n}}\| d=\|\mathbf{Q P}|\|\mid \overrightarrow{\mathbf{n}}\| \cos \theta
$$

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Distance between Point and Plane (Derivation)

Given point P and plane $A x+B y+C z+D=0$

Distance between Point and Plane (Formula)

Proposition

The distance, d, between a point P and a plane is:

$$
d=\frac{|\mathbf{Q P} \cdot \overrightarrow{\mathbf{n}}|}{\|\overrightarrow{\mathbf{n}}\|}
$$

where $\overrightarrow{\mathbf{n}}$ is a normal vector to the plane and Q is any (simple) point on the plane.

Distance between Two Parallel Planes

Given parallel planes
$\mathbb{P}_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $\mathbb{P}_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0$

Distance between Two Parallel Planes

Given parallel planes
$\mathbb{P}_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $\mathbb{P}_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0$

Extract normal vector to plane $\mathbb{P}_{1}: \overrightarrow{\mathbf{n}}=\left\langle A_{1}, B_{1}, C_{1}\right\rangle$

Distance between Two Parallel Planes

Given parallel planes
$\mathbb{P}_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $\mathbb{P}_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0$

Pick any (simple) point P on plane \mathbb{P}_{2}.

Distance between Two Parallel Planes

Given parallel planes
$\mathbb{P}_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $\mathbb{P}_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0$

Find the distance between point P and plane \mathbb{P}_{1}.

Fin.

