Planes in Space Calculus III

Josh Engwer

TTU

05 September 2014

Special Planes (Coordinate Planes)

• Mnemonic Device: (missing variable) = 0

Special Planes (Coordinate Planes)

• Mnemonic Device:
$$(missing variable) = 0$$

Special Planes (Coordinate Planes)

• Mnemonic Device:
$$\left(\mathsf{missing variable}
ight) = 0$$

Definition

The standard form of a plane is:

$$Ax + By + Cz + D = 0$$

where $A, B, C, D \in \mathbb{R}$.

Given plane with normal vector $\vec{\mathbf{n}} = \langle n_1, n_2, n_3 \rangle$ & containing point $P_0(x_0, y_0, z_0)$

Equation of Plane: Ax + By + Cz + D = 0

Given plane with normal vector $\vec{\mathbf{n}} = \langle n_1, n_2, n_3 \rangle$ & containing point $P_0(x_0, y_0, z_0)$

Equation of Plane: $n_1x + n_2y + n_3z + D = 0$

Let components of normal vector \vec{n} be the coefficients of x, y, z.

Given plane with normal vector $\vec{\mathbf{n}} = \langle n_1, n_2, n_3 \rangle$ & containing point $P_0(x_0, y_0, z_0)$

Equation of Plane: $n_1x + n_2y + n_3z + D = 0$

Substitute given point (x_0, y_0, z_0) into x, y, z respectively: $n_1x_0 + n_2y_0 + n_3z_0 + D = 0$

Given plane with normal vector $\vec{\mathbf{n}} = \langle n_1, n_2, n_3 \rangle$ & containing point $P_0(x_0, y_0, z_0)$

Equation of Plane: $n_1x + n_2y + n_3z + (-n_1x_0 - n_2y_0 - n_3z_0) = 0$

Solve the resulting equation for *D*: $D = -n_1x_0 - n_2y_0 - n_3z_0$

Given plane with normal vector $\vec{\mathbf{n}} = \langle n_1, n_2, n_3 \rangle$ & containing point $P_0(x_0, y_0, z_0)$

Equation of Plane: $n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0$

Group terms.

Josh Engwer	(TTU)
-------------	-------

Proposition

Equation of plane with normal vector $\vec{\mathbf{n}} = \langle n_1, n_2, n_3 \rangle$ and containing point $P_0(x_0, y_0, z_0)$ is:

$$n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0$$

Given a plane containing three noncollinear points *P*, *Q*, *R*.

Given a plane containing three noncollinear points P, Q, R.

Form vectors PQ and PR.

Given a plane containing three noncollinear points P, Q, R.

Form normal vector \vec{n} using a cross product: $\vec{n} = PQ \times PR$

Given a plane containing three noncollinear points P, Q, R.

Using normal vector \vec{n} and one of the three given points *P*, *Q*, *R*, follow CASE I.

Given a plane containing intersecting lines ℓ_1, ℓ_2 .

Given a plane containing intersecting lines ℓ_1, ℓ_2 .

Form vectors $\vec{\mathbf{w}}$ and $\vec{\mathbf{v}}$ parallel to lines ℓ_1 and ℓ_2 respectively.

Given a plane containing intersecting lines ℓ_1, ℓ_2 .

Form normal vector \vec{n} using a cross product: $\vec{n} = \vec{v} \times \vec{w}$

Given a plane containing intersecting lines ℓ_1, ℓ_2 .

Pick any (simple) point *P* on either line ℓ_1 or ℓ_2 .

Given a plane containing intersecting lines ℓ_1, ℓ_2 .

Using normal vector \vec{n} and point *P*, follow CASE I.

Given point $P_0(x_0, y_0, z_0)$ and plane Ax + By + Cz + D = 0

Given point $P_0(x_0, y_0, z_0)$ and plane Ax + By + Cz + D = 0

Extract normal vector from plane: $\vec{\mathbf{n}} = \langle A, B, C \rangle$.

Given point $P_0(x_0, y_0, z_0)$ and plane Ax + By + Cz + D = 0Find an equation for the line ℓ .

Notice that line ℓ is parallel to normal vector \vec{n} .

Given point $P_0(x_0, y_0, z_0)$ and plane Ax + By + Cz + D = 0Find an equation for the line ℓ .

Equation of line ℓ containing point P_0 and orthogonal to plane is:

$$x = x_0 + At$$

$$y = y_0 + Bt$$

$$z = z_0 + Ct$$

$$t \in \mathbb{R}$$

Proposition

Equation of line ℓ containing point $P_0(x_0, y_0, z_0)$ and orthogonal to plane Ax + By + Cz + D = 0 is:

$$\begin{array}{l}
x = x_0 + At \\
y = y_0 + Bt \\
z = z_0 + Ct \\
t \in \mathbb{R}
\end{array}$$

Given point $P_0(x_0, y_0, z_0)$ and plane Ax + By + Cz + D = 0Find the point of intersection of the line & plane.

Equation of line ℓ containing point P_0 and orthogonal to plane is:

$$x = x_0 + At$$

$$y = y_0 + Bt$$

$$z = z_0 + Ct$$

$$t \in \mathbb{R}$$

Given point $P_0(x_0, y_0, z_0)$ and plane Ax + By + Cz + D = 0Find the point of intersection of the line & plane.

Substitute equation of line ℓ into equation of plane, then solve for parameter *t*.

Given point $P_0(x_0, y_0, z_0)$ and plane Ax + By + Cz + D = 0Find the point of intersection of the line & plane.

Plug value of *t* into equation of line ℓ to determine point *Q* where the line intersects plane.

Given point *P* and plane Ax + By + Cz + D = 0

Extract normal vector from the plane: $\vec{\mathbf{n}} = \langle A, B, C \rangle$

Given point *P* and plane Ax + By + Cz + D = 0

Pick any (simple) point Q on the plane.

Given point *P* and plane Ax + By + Cz + D = 0

Form vector QP.

Distance between Point and Plane (Formula)

Proposition

The distance, d, between a point P and a plane is:

$$d = \frac{|\mathbf{Q}\mathbf{P}\cdot\vec{\mathbf{n}}|}{||\vec{\mathbf{n}}||}$$

where \vec{n} is a **normal vector** to the plane and *Q* is any (simple) point on the plane.

Given parallel planes $\mathbb{P}_1: A_1x + B_1y + C_1z + D_1 = 0$ and $\mathbb{P}_2: A_2x + B_2y + C_2z + D_2 = 0$

Given parallel planes $\mathbb{P}_1 : A_1 x + B_1 y + C_1 z + D_1 = 0$ and $\mathbb{P}_2 : A_2 x + B_2 y + C_2 z + D_2 = 0$

Extract normal vector to plane \mathbb{P}_1 : $\vec{\mathbf{n}} = \langle A_1, B_1, C_1 \rangle$

	Josh	Engwer	(TTU)
--	------	--------	-------

Given parallel planes $\mathbb{P}_1 : A_1 x + B_1 y + C_1 z + D_1 = 0$ and $\mathbb{P}_2 : A_2 x + B_2 y + C_2 z + D_2 = 0$

Pick any (simple) point *P* on plane \mathbb{P}_2 .

Josh Engwer	(TTU)
-------------	-------

Given parallel planes $\mathbb{P}_1 : A_1 x + B_1 y + C_1 z + D_1 = 0$ and $\mathbb{P}_2 : A_2 x + B_2 y + C_2 z + D_2 = 0$

Find the distance between point *P* and plane \mathbb{P}_1 .

Fin.