Gauss Quadrature: Error Term

Josh Engwer
Texas Tech University
josh.engwer@ttu.edu

September 24, 2011

EVEN \& ODD FUNCTIONS:

f is odd function $\Longleftrightarrow f(-x)=-f(x) . g$ is even function $\Longleftrightarrow g(-x)=g(x)$.
f is odd function $\Rightarrow \int_{-a}^{a} f(x) d x=0 . \quad g$ is even function $\Rightarrow \int_{-a}^{a} g(x) d x=2 \int_{0}^{a} g(x) d x$.

GAUSS QUADRATURE:

An n-point Gauss Quadrature rule satisfies $\int_{a}^{b} \varphi(x) f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$
where $\varphi(x)$ is a given weight function, the x_{i} 's are the nodes, the w_{i} 's are the weights. Each $x_{i} \in(a, b)$.
An n-point Gauss Quadrature rule integrates polynomials of degree $(2 n-1)$ or less exactly.
Unlike Newton-Cotes Quadrature rules, the nodes x_{i} in Gauss Quadrature rules are not equidistant.
When applicable, take advantage of any symmetry in $\varphi(x) f(x)$ to simplify the computations.

QUADRATURE ERROR:

An n-point quadrature rule $Q^{(n)}(f)$ approximates a definite integral $I(f)$ of $f(x)$:
$I(f) \approx Q^{(n)}(f)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$, where the x_{i} 's are nodes and the w_{i} 's are weights.
The error associated with quadrature rule $Q^{(n)}(f)$ is denoted by $E^{(n)}(f): \quad I(f)=Q^{(n)}(f)+E^{(n)}(f)$

[^0]EXAMPLE: Determine the error term of this quadrature rule : $\int_{-1}^{1} f(x) d x \approx 2 f(0)$
This is a one-point Gauss quadrature rule of the form : $I(f)=Q^{(1)}(f)+E^{(1)}(f)$
An n-point Gauss Quadrature rule integrates polynomials of degree $(2 n-1)$ or less exactly.
Here, $n=1$, so this rule exactly integrates linear polynomials.
Thus, since quadratics are the lowest-degree polynomials that have an error with this quadrature, and quadratics have a constant $\mathbf{2}^{\text {nd }}$ derivative, let $f(x)=x^{2}$ and $E^{(1)}(f)=k f^{\prime \prime}(\xi)$, where $\xi \in[-1,1]$

Now, $f(x)=x^{2} \Rightarrow f^{\prime \prime}(x)=2$. The constant k must be determined :
$\int_{-1}^{1} x^{2} d x=2 f(0)+E^{(1)}(f) \Rightarrow \frac{2}{3}=2(0)^{2}+k f^{\prime \prime}(\xi) \Rightarrow k f^{\prime \prime}(\xi)=\frac{2}{3} \Rightarrow 2 k=\frac{2}{3} \Rightarrow k=\frac{1}{3}$
Hence, the error term of Gauss quadrature rule is : $E^{(1)}(f)=\frac{1}{3} f^{\prime \prime}(\xi)$, where $\xi \in[-1,1]$ and $f \in C^{2}[-1,1]$

EXAMPLE: Determine the error term of this quadrature rule :
$\int_{-1}^{1} x^{10} f(x) d x \approx \frac{1}{13} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{4}{143} f(0)+\frac{1}{13} f\left(\sqrt{\frac{3}{5}}\right)$
This is a 3-point Gauss quadrature rule of the form : $I(f)=Q^{(3)}(f)+E^{(3)}(f)$
An n-point Gauss Quadrature rule integrates polynomials of degree $(2 n-1)$ or less exactly.
Here, $n=3$, so this rule exactly integrates $5^{\text {th }}$-degree polynomials.
Thus, since $6^{\text {th }}$-degree polynomials are the lowest-degree polynomials that have an error with this quadrature, and they have a constant $6^{\text {th }}$ derivative, let $f(x)=x^{6}$ and $E^{(3)}(f)=k f^{(6)}(\xi)$, where $\xi \in[-1,1]$

Now, $f(x)=x^{6} \Rightarrow f^{(6)}(x)=6!=720$. The constant k must be determined :
$\int_{-1}^{1} x^{10} x^{6} d x=\frac{1}{13} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{4}{143} f(0)+\frac{1}{13} f\left(\sqrt{\frac{3}{5}}\right)+E^{(3)}(f)$
$\Rightarrow \int_{-1}^{1} x^{16} d x=\frac{1}{13} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{4}{143} f(0)+\frac{1}{13} f\left(\sqrt{\frac{3}{5}}\right)+E^{(3)}(f)$
$\Rightarrow\left[\frac{x^{17}}{17}\right]_{-1}^{1}=\frac{1}{13}\left(-\sqrt{\frac{3}{5}}\right)^{6}+\frac{4}{143}(0)^{6}+\frac{1}{13}\left(\sqrt{\frac{3}{5}}\right)^{6}+E^{(3)}(f)$
$\Rightarrow \frac{2}{17}=\left(\frac{1}{13}\right)\left(\frac{27}{125}\right)+0+\left(\frac{1}{13}\right)\left(\frac{27}{125}\right)+k f^{(6)}(\xi)$
$\Rightarrow k f^{(6)}(\xi)=\frac{2332}{27625} \Rightarrow 720 k=\frac{2332}{27625} \Rightarrow k=\frac{94}{801741}$
Hence, the error term of this rule is : $E^{(3)}(f)=\frac{94}{801741} f^{(6)}(\xi)$
where $\xi \in[-1,1]$ and $f \in C^{6}[-1,1]$

References

[1] A. S. Ackleh, E. J. Allen, R. B. Hearfott, P. Seshaiyer, Classical and Modern Numerical Analysis. CRC Press, New York, NY, 2010.
[2] D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of Scientific Computing. Brooks Cole, Pacific Grove, CA, 3rd Edition, 2002.
[3] R. Kress, Numerical Analysis. Springer-Verlag, New York, NY, 1998.

[^0]: Copyright 2011 Josh Engwer

