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ABSTRACT

Our research concerns the numerical solution of the Landau-Lifschitz-Gilbert

Equation coupled with the Eddy Currents Equation. We construct a partitioned

implicit Runge-Kutta timestepper with one component being L-stable and the other

being quadratic invariant-preserving. Mixed (Nédélec, Vector Lagrange) finite ele-

ments are employed for spatial discretization. We discuss using the resulting scheme

for simulations as well as validation tests and error estimates. Remarks on software

implementation are provided.

This dissertation was first revised from late September 2019 until late December

2019 after the discovery that the Lobatto IIIA timestepper is not actually quadratic

invariant-preserving (QIP) as previously thought given the encouraging validation

plot results. Besides several small typo fixes, grammar corrections, clarifications,

relabelings and restylings sprinkled over about twenty-five pages, the remaining re-

visions in the content, tables and plots mainly involve using Lobatto IIIS as part of

the chosen partitioned implicit Runge-Kutta (PIRK) timestepper in place of Lobatto

IIIA. Other revisions include adding Cooper’s QIP Theorem, removing mention of

the Lobatto IIIC*, Radau I & Radau II timesteppers as they did not possess desirable

features and space was tight, adding mention of the Radau IIA & IIB timesteppers,

removing two terms in the LLG+EC weak form involving a self cross product which

will always vanish, and added a few new or missing references to the Bibliography.

In early September 2022, a few more major typos were discovered. In particular,

the Trapezoidal timestepper was incorrectly stated as QIP in Table 3.1, and the

caption for Table 8.1 incorrectly stated that the first value in each table entry was

the number of non-zeros of the Jacobian matrix when instead it represents its matrix

size. Both of these typos have now been corrected.

Readers that are interested in the original dissertation and the detailed accompa-

nying errata sheet can click the following URL to access them at the the Texas Tech

University Library website: http://hdl.handle.net/2346/74392

viii

http://hdl.handle.net/2346/74392


Texas Tech University, Josh Engwer, August 2018 (Last Revised September 2022)

LIST OF TABLES

1.1 Maxwell’s Equations & Constitutive Equations . . . . . . . . . . . . . 4

1.2 Electromagnetic Simplifying Assumptions . . . . . . . . . . . . . . . 5

2.1 Taylor Series Timesteppers . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Adams-Bashforth LM Timesteppers . . . . . . . . . . . . . . . . . . . 12

2.3 Adams-Moulton LM Timesteppers . . . . . . . . . . . . . . . . . . . 13

2.4 Backward Differentiation Formula LM Timesteppers . . . . . . . . . . 14

2.5 Runge-Kutta Order Conditions . . . . . . . . . . . . . . . . . . . . . 19

2.6 Gauss-Legendre IRK Timesteppers . . . . . . . . . . . . . . . . . . . 28

2.7 Radau IRK Timesteppers . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Lobatto IRK Timesteppers . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 DIRK timesteppers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 SDIRK timesteppers . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Timestepper Order, Stability & Invariance Summary . . . . . . . . . 55

4.1 (Scalar) Lagrange Elements . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Vector Lagrange Elements . . . . . . . . . . . . . . . . . . . . . . . . 66
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CHAPTER I

INTRODUCTION

1.1 Micromagnetics Overview

Micromagnetics [18, 70] is a subfield of electromagnetics spearheaded in 1935

by Landau and Lifshitz [71, 72] which involves the dynamics of magnetic fields and

magnetization fields in ferromagnetic solids. This is essential to the proper function of

certain storage devices, sensors and actuators. The prefix “micro” in micromagnetics

reflects the fact that this magnetic behaviour occurs at the micrometer scale rather

than the nanometer or atomic scales.

The manner in which spinning hard drives store data [61] is as follows: there’s a

platter that spins typically at thousands of revolutions per minute, and a read-write

arm will change the magnetic field in a tiny portion of the platter by manupulating

the magnetic dipoles in that small area. The neighboring dipoles can be arranged

in one of two arrangements: one arrangement represents the bit ’0’, and the other

arrangement represents the bit ’1’. A finite sequence of these bits, therefore, repre-

sents a piece of the data that is stored and can be retrieved later as needed. Similar

micromagnetic behavior [61] occurs when writing to: a spindle of magnetic tape used

in mainframes circa the 1960’s, audio cassette tapes popular in the 1980’s and floppy

disks used in the 1980’s. By contrast, CD’s, DVD’s and Blu Ray’s are read and

written by a special optical laser.

Sensors and actuators function with the help of a ferromagnet that is magne-

tostrictive [61]. This means as a sufficiently strong external magnetic field is applied

to the solid, it experiences mechanical stress that causes it to either elongate or com-

press. With a sensor, a stretched ferromagnet blocks a light beam, causing the sensor

to trigger. Stretching the solid in an actuator causes an electric circuit to complete

and thus activate another portion of the system. Such mangetostrictive components

are also found in sonar systems and fuel injection systems.
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1.2 Eddy Currents Overview

Consider an ordinary pendulum but instead of a ball suppose a conductive plate

is attached at the end [45, 112]. Fix a horseshoe or U-shaped magnet precisely

at the lowest point of the pendulum’s swing. Starting at a reasonably high point,

release the pendulum and observe its subsequent back-and-forth swings. As the plate

passes through the magnet, notice that it markedly slows down, eventually coming

to a complete stop. This occurs because as the plate enters the magnet’s magnetic

field Hext, the magnetic induction field of the plate, Bplate, changes [45, 61, 112].

But as dictated by Lenz’s Law, the plate’s changing magnetic flux
(
i.e.

∂Bplate

∂t
̸= 0⃗
)
,

induces an electromotive force (emf) which causes the plate’s free electrons to move

in a swirling motion [45, 61, 112]. These swirling electric currents on the plate’s

surface are called eddy currents because their motion looks similar to eddys in ocean

water.

In everyday devices, the presence of eddy currents are often a nuisance because

they cause a loss in power efficiency [112]. Again, it’s a loss in efficiency due to Lenz’s

Law which states the magnetic field due to the eddy currents always opposes the

change that produced them. Therefore, to minimize eddy currents, the conducting

material either has cuts or interleaving insulation [112]. Of course, there are rare

instances where power losses due to eddy currents are actually desirable, say when

powering off a high-speed electric saw or braking a subway train [112].

1.3 Literature Survey on Micromagnetics Coupled with Eddy Currents

We are interested in coupling micromagnetic behaviour in the presence of eddy

currents. There are many published works on numerical methods for micromagnetics

by itself; likewise for eddy currents by itself. Only since the seminal paper by Visintin

[124] in 1985 has there been work on numerical methods for the coupling of the two

behaviors together.

In terms of the problem’s spatial dimension, 1D [47, 63, 86, 108, 111] was some-

times used. As expected, many authors chose 3D [10, 22, 30, 35, 56, 57, 116]. Yanik

2



Texas Tech University, Josh Engwer, August 2018 (Last Revised September 2022)

et al [127, 128] started in 3D but with their domain choice reduced the problem to

one spatial dimension by means of symmetry and a change of coordinates. Monk

and Vacus [91] reduced their selected 3D problem to two spatial dimensions due to

symmetry.

Regarding spatial discretization of the coupled micromagnetics-eddy-currents model,

finite differences [35, 86, 111] are occasionally used. Other papers handle it through

Fast Fourier transforms [22, 108, 119, 120]. A hybrid method involving finite ele-

ments and boundary elements [56, 57] is also constructed. Most works exclusively

used the preferred finite elements [10, 30, 47, 63, 76, 91, 116]. However, they only

considered low-order (i.e. zeroth- or first-order) node and edge elements.

For discretization in time, several authors employed a variable-step multistep

timestepper [30, 56] while Yanik et al [127, 128] used finite difference time domain.

Chang et al [22] reformulated the problem as a differential-algebraic equation and

applied an appropriate timestepper. A few others utilized an explicit timestepper

[35, 86, 119, 120] – the higher-order ones required extremely tiny timestep sizes such

as ∆t ≈ 10−13 or smaller which causes the simulation codes to become impractically

slow. Monk and Vacus [91] apply an explicit/implicit timestepper. Most papers

used the more desirable implicit timestepping schemes [10, 47, 63, 76, 111, 116] of

either first- or second-order.

Nearly all the forementioned papers had homogeneous boundary conditions im-

posed on the equation governing eddy currents in one of the following forms:

n× E = 0⃗, n×H = 0⃗, n× (∇×H) = 0⃗, [n×Heddy]
out
in = 0⃗ (1.1)

The exceptions are Mayergoyz [86] and Serpico [111] who impose inhomogeneous

boundary conditions on their 1D eddy currents formulations:

H(z; t)|∂Ω = HD(t) (1.2)

Finally, Slodička and Baňas [116] enforced simplifying assumptions to justify ap-

proximating the nonlinear micromagnetics equation with a linear one.
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1.4 Model Derivation

1.4.1 Electromagnetic Behaviour in a Solid Material

This model has Maxwell’s Equations [112] as the basic foundation of electromag-

netic behaviour in a vacuum. However, there’s a solid material involved, so the

so-called constitutive equations [45] are incorporated with Maxwell’s Equations. All

together, these equations model electromagnetic behaviour in a solid medium:

Table 1.1: Maxwell’s Equations & Constitutive Equations

MAXWELL’S

EQUATIONS

CONSTITUTIVE

EQUATIONS
INTERPRETATIONS

(MX1)

∇ ·D = ρf

(CE1)

D = ϵE+P

ρf ≡ Free Charge Density

ϵ ≡ Material Permittivity

P ≡ Polarization Field

(MX2)

∇ ·B = 0

(CE2)

B = µ(H+M)

µ ≡ Material Permeability

M ≡ Magnetization Field

(MX3)

∇× E = −Bt

σ ≡ Material Conductivity

E ≡ Electric Field

B ≡ Mag. Inductance

(MX4)

∇×H = Jf +Dt

(CE3)

Jf = σE

D ≡ Elec. Displacement

Jf ≡ Free Current Density

H ≡ Magnetic Field

1.4.2 Simplifying Assumptions

This system of equations models a broad spectrum of behaviour. Table 1.2 lists

the physical assumptions [2, 60] that will be imposed to simplify the forthcoming

model.
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Table 1.2: Electromagnetic Simplifying Assumptions

Let Ω ⊂ Rd (d ∈ {2, 3}) be a solid medium such that it is/has:

conductive (P = 0⃗), ferromagnetic (Hexch ̸= 0⃗, kexch ≡ Exchange Stiff.)

demagnetizing energy from interacting mag. moments (Hdemag ̸= 0⃗)

sitting in a vacuum subject to an external magnetic field (Hext ̸= 0⃗)

surface anisotropy (Js ̸= 0⃗), no applied voltage (ρ = 0)

uniaxially anisotropic (Hanis ̸= 0⃗, kanis ≡ Anisotropy, â ≡ Easy Axis)

(QSE) quasi-static electromagnetic field ( ||Jf || ≫ ||Dt||)

(SAσ) Constant conductivity of material (σ is constant)

(SAµ) Constant permeability of material (µ is constant)

1.4.3 Eddy Currents Equation (EC)

A PDE model for eddy currents results from manipulation of Maxwell’s and con-

stitutive equations along with use of the quasi-static/low-frequency approximation

(QSE) and vector algebra/calculus identities (see Appendix):

MX4
=⇒ ∇×H = Jf +Dt

QSE
=⇒ ∇×H = Jf

CE3
=⇒ ∇×H = σE

∇×
=⇒ ∇×∇×H = ∇× (σE)

V C2
=⇒ ∇×∇×H = σ(∇× E) + (∇σ)× E

SAσ
=⇒ ∇×∇×H = σ(∇× E) + 0⃗

MX3
=⇒ ∇×∇×H = σ (−Bt)

CE2
=⇒ σBt +∇×∇×

(
1
µ
B−M

)
= 0⃗

SAµ
=⇒ σBt +

1
µ
∇×∇×B−∇×∇×M = 0⃗

V C3
=⇒ σBt +

1
µ

[
∇(∇ ·B)−∇2

B
]
−∇×∇×M = 0⃗

MX2
=⇒ σBt − 1

µ
∇2

B−∇×∇×M = 0⃗

(1.3)
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The resulting constrained PDE model is called the Eddy Currents equation: Bt − 1
µσ
∇2

B− 1
σ
∇×∇×M = 0⃗ in Ω× [0, T ]

∇ · B = 0 in Ω× [0, T ]
(1.4)

Maxwell’s Equations directly supply the zero divergence of B, which is interpreted

to mean that there are no magnetic monopoles [112].

1.4.4 Landau-Lifschitz-Gilbert Equation (LLG)

Micromagnetic behavior is modeled by the Landau-Lifschitz-Gilbert equation [18,

42, 43, 70, 71, 72]: Mt − γ0
1+α2 (M×Heff )− γ0α

(1+α2)Ms
M× (M×Heff ) = 0⃗ for t > 0

M = M0 at t = 0
(1.5)

The parameter γ0 < 0 represents the gyromagnetic ratio [43, 60, 70, 89] for an

electron spin while α is a dimensionless damping parameter [43, 70].

The two cross-product terms are both perpendicular to M, so that the LLG

equation bears a quadratic invariant, namely that the norm of the magnetization

field M should have constant norm for all time:

M×Heff ⊥M and M× (M×Heff ) ⊥M
LLG
=⇒ Mt ⊥M

∴ d
dt
[||M||2] = d

dt

[
1
2
M ·M

]
= M ·Mt

⊥
= 0

∴ ||M(t)|| = Ms ∀t ≥ 0

(1.6)

The effective magnetic field Heff is a convenient expression that allows the LLG

Equation to be written more compactly. More importantly, Heff measures the

magnetic field due to the eddy currents in addition to the magnetic field due to

everything else (which the magnetic field H captures by itself.) Hence, the LLG

equation is interpreted to mean that the magnetization fieldM ’spirals inward’ toward

the effective magnetic field Heff over time.

1.4.5 The Coupled PDE System (LLG+EC)

To fully describe the desired micromagenetic behaviour, the Eddy Currents and

Landau-Lifschitz-Gilbert equations should be coupled together [60, 89] with homo-
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geneous Neumann boundary conditions imposed on M. The resulting model is a

system of coupled PDE’s:
(
where B,M ∈

[
C(2,1)(Ω× [0, T ])

]d)


Bt − 1
µσ
∇2

B− 1
σ
∇×∇×M = 0⃗ in Ω× [0, T ]

∇ ·B = 0 in Ω× [0, T ]

1
µ
B−M+ 2kanis

Ms
(M · â)â+ kexch

M2
s
∇2

M = Heff in Ω× [0, T ]

Mt − γ0
1+α2 (M×Heff )− γ0α

(1+α2)Ms
M× (M×Heff ) = 0⃗ in Ω× [0, T ]

B = BD on ∂Ω× [0, T ]

∂M/∂n = 0⃗ on ∂Ω× [0, T ]

B = B0 at Ω× {t = 0}

M = M0 at Ω× {t = 0}

(1.7)

We shall assume that the solid conductor’s temperature remains perpetually below

the Curie temperature. This assumption together with (1.6) means that this coupled

system also has a quadratic invariant, this time the magnetization field’s norm remains

constant for all time everywhere in the solid.

This dissertation shows how to construct a high-order numerical method for the

coupled eddy-currents-micromagnetics model with inhomogeneous Dirichlet bound-

ary conditions for the eddy currents equation and homogeneous Neumann boundary

conditions for the micromagnetics equation. The method will employ high-order

finite elements in order to use domains with complicated geometries, use coarser

meshes of the domain, and result in sparse linear systems that can be handled by di-

rect and Krylov solvers. Invoked timesteppers will be high-order implicit schemes to

allow coarser timestep sizes while maintaining key stability and invariance properties.

Validation tests confirming correct behavior of a FEniCS-based simulation code are

shown.
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CHAPTER II

TIMESTEPPERS: CONSTRUCTION & ORDER OF ACCURACY

This chapter is a review of standard theory for timestepping, with an eye towards

the requirements for our problem.

2.1 Model Initial Value Problem

In order to develop an appropriate timestepper for our micromagnetics problem at

hand, a model initial value problem (IVP) shall be assumed along with assumptions

about the initial data. Here are the assumed scalar model IVP and vector model

IVP respectively [52, 59]:

Model IVP (MIVP):

 u′(t) = Ψ(t;u)

u(t0) = u0

(2.1)

Model Vector IVP (MVIVP):

 u′(t) = Ψ(t; u)

u(t0) = u0

(2.2)

The solution u and right-hand side (RHS) Ψ are at a bare minimum continuously

differentiable, but more smoothness may be required for certain classes of timesteppers

[77]. Similar requirements are imposed on the components of u and RHS Ψ.

For our particular micromagnetics problem and most real-world problems, the

vector model IVP is utilized, but when constructing and analyzing timesteppers, it

is sufficient to use the scalar model IVP [77].

2.2 Timestepper Order of Accuracy

One expects that a given timestepper will become more accurate when using

smaller and smaller timestep sizes ∆t. We would like a measure of “how fast” a

timestepper becomes more accurate with decreasing ∆t. The desired measure is

called order of accuracy.
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2.2.1 Local Truncation Error

Order of accuracy can be found by computing the timestepper’s local truncation

error [52]. Local truncation error is most-commonly expressed as in [59]:

Definition 2.2.1. (Local Truncation Error)

Given the d-dimensional model vector IVP (MVIVP) over time interval [t0, T ]

containing timesteps t1, · · · , tk and an arbitrary timestepper

u(k+1) = Uk
(
Ψ,∆t; u(0),u(1), · · · ,u(k)

)
where mapping Uk : [C0([t0, T ])]

d×R×
∏k+1

j=1 Rd → Rd, then the timestepper has

order of accuracy p > 0, or is pth-order, if its local truncation error

LTE := u(tk+1)− Uk (Ψ,∆t; u(t0),u(t1), · · · ,u(tk)) = O ((∆t)p+1)

The big-oh notation O(·) is defined with examples in [52, 77].

2.2.2 Global Error

We wish to know the timestepper’s total error in the numerical solution at t = T :

Definition 2.2.2. (Global Error)

Given the d-dimensional model vector IVP (MVIVP) over time interval [t0, T ]

containing all NT timesteps t1, · · · , tk, tk+1, · · · , tNT
= T and an arbitrary timestepper

u(k+1) = Uk
(
Ψ,∆t; u(0),u(1), · · · ,u(k)

)
then the global error in the timestepper at t = T is

GE := u(T )− u(NT )

One can expect that the global error will usually be an order of magnitude higher

than the local truncation error, because informally we can estimate:

GE ≈
NT∑
j=1

LTE = NT · O
(
(∆t)p+1

)
=

T

∆t
· O
(
(∆t)p+1

)
= O ((∆t)p) (2.3)
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Rigorously showing this when applying a particular timestepper to a particular

IVP is intricate and tedious – see [59, 77] for examples. It is common to use the

informal estimate as a “rule of thumb” for the global error; it needs to be tested

experimentally on each new class of problem [73, 97, 102].

2.2.3 Order of Accuracy does not Guarantee Convergence

Suppose a pth-order timestepper is applied to a given IVP over a time interval

[0, T ]. Then, one may naively assume that for a chosen ∆t that the numerical

solution will be “close” to the exact solution; and with decreasing ∆t, it is expected

to “converge” to the exact solution. Unfortunately, this is not true in general [52, 59,

77]. Certain additional conditions must be satisfied in order to ensure this assumed

behavior. This will be explored much further in Chapter 3.

2.3 Taylor Series (TS) Timesteppers

For a sufficiently differentiable solution in time, a timestepper can be developed

using the truncated Taylor series of the solution with its derivatives written in terms

of derivatives of the IVP’s RHS function [52, 77]:

Definition 2.3.1. (Taylor Series Timesteppers)

The general p-derivative Taylor series timestepper, denoted TSp, is:

u(k+1) = u(k) +

p∑
j=1

(∆t)j

j!
· d

ju

dtj

∣∣∣
t=tk

(2.4)

where the derivatives of u are to be fully written out in terms of model IVP

right-hand side Ψ and its partial derivatives Ψt,Ψu,Ψuu,Ψtu,Ψut,Ψtt, . . . using the

2-Variable Chain Rule in the Appendix.

Proposition 2.3.1. (Taylor Series Timesteppers – Order of Accuracy)

The p-derivative Taylor series timestepper, TSp, is pth-order.

Proof. Referring to the error bounds for Taylor polynomial approximation, it is clear

that the local truncation error LTETSp = O ((∆t)p+1)
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Below are the first three p-derivative Taylor Series timesteppers:

Table 2.1: Taylor Series Timesteppers [52, 77]

TS1 : u(k+1) = u(k) + ∆t
1!

[
Ψ(k)

]
TS2 : u(k+1) = u(k) + ∆t

1!

[
Ψ(k)

]
+ (∆t)2

2!

[
Ψ

(k)
t +Ψ

(k)
u ·Ψ(k)

]
TS3 : u(k+1) = u(k) + ∆t

1!

[
Ψ(k)

]
+ (∆t)2

2!

[
Ψ

(k)
t +Ψ

(k)
u ·Ψ(k)

]
+ (∆t)3

3!

 Ψ
(k)
tu ·Ψ(k) +

(
Ψ

(k)
ut +Ψ

(k)
uu ·Ψ(k)

)
·Ψ(k)

+ Ψ
(k)
tt +

(
Ψ

(k)
t +Ψ

(k)
u ·Ψ(k)

)
·Ψ(k)

u



Unfortunately, there are several major problems with this approach. First, partial

derivatives of the RHS Ψ must be known a priori [52, 77]. Second, high-order

timesteppers are extremely tedious to fully write out due to the Two-Variable Chain

Rule. Third, when the model IVP is vector-valued rather than scalar-valued, the

derivatives of the solution involve consecutively higher-order tensors which require

more memory to store. For these reasons, a better timestepper needs to be employed

for our micromagnetics problem.

2.4 Linear Multistep (LM) Timesteppers

Here is our second attempt toward a viable timestepper for our problem.

Let’s consider the general r-step linear multistep timestepper [52, 59, 77]:

r∑
j=0

aju
(k+j) = (∆t)

r∑
j=0

bjΨ
(
tk+j ; u(k+j)

)
(2.5)

where the coefficients a0, · · · , ar; b0, · · · , br ∈ R.

This has the advantages over Taylor Series timesteppers in that no explicit com-

putation of derivatives is necessary and for vector IVP’s all the terms are vectors, not

higher-order tensors.

There are three popular classes of linear multistep timesteppers.
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2.4.1 Adams-Bashforth Timesteppers

First up, the Adams-Bashforth class of explicit LM timesteppers [52, 59, 77]:

Definition 2.4.1. (Adams-Bashforth Timesteppers)

Imposing the following requirements on the general LM timestepper (2.6)

a0 = a1 = · · · = ar−2 := 0, ar−1 := −1, ar := 1 and br := 0

results in the r-step Adams-Bashforth timestepper, denoted ABr:

u(k+r) − u(k+r−1) = (∆t)
r−1∑
j=0

bjΨ
(
tk+j ; u(k+j)

)
where coefficients b0, . . . , br−1 are chosen to maximize the order of accuracy.

Proposition 2.4.1. (Adams-Bashforth – Order of Accuracy)

The r-step Adams-Bashforth timestepper, ABr, has order r.

Table 2.2: Adams-Bashforth LM Timesteppers [52, 77]

AB1 : u(k+1) − u(k) = (∆t)
[
Ψ(k)

]
AB2 : u(k+2) − u(k+1) = (∆t)

[
3
2
Ψ(k+1) − 1

2
Ψ(k)

]
AB3 : u(k+3) − u(k+2) = (∆t)

[
23
12
Ψ(k+2) − 4

3
Ψ(k+1) + 5

12
Ψ(k)

]

2.4.2 Adams-Moulton Timesteppers

Next, we have the Adams-Moulton class of implicit LM timesteppers [52, 59, 77]:

Definition 2.4.2. (Adams-Moulton Timesteppers)

Imposing the following requirements on the general LM timestepper (2.6)

a0 = a1 = · · · = ar−2 := 0, ar−1 := −1, ar := 1

results in the r-step Adams-Moulton timestepper, denoted AMr:
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u(k+r) − u(k+r−1) = (∆t)
r∑

j=0

bjΨ
(
tk+j ; u(k+j)

)
The coefficients b0, . . . , br are chosen to maximize the order of accuracy.

Proposition 2.4.2. (Adams-Moulton – Order of Accuracy)

The r-step Adams-Moulton timestepper, AMr, has order (r + 1).

Table 2.3: Adams-Moulton LM Timesteppers [52, 77]

AM1 : u(k+1) − u(k) = (∆t)
[
1
2
Ψ(k+1) + 1

2
Ψ(k)

]
AM2 : u(k+2) − u(k+1) = (∆t)

[
5
12
Ψ(k+2) + 2

3
Ψ(k+1) − 1

12
Ψ(k)

]
AM3 : u(k+3) − u(k+2) = (∆t)

[
3
8
Ψ(k+3) + 19

24
Ψ(k+2) − 5

24
Ψ(k+1) + 1

24
Ψ(k)

]

2.4.3 Backward Differentiation Formulas

Finally, there are the implicit Backward Differentiation Formulas [52, 59, 77]:

Definition 2.4.3. (Backward Differentiation Formulas)

Imposing the following requirements on the general LM timestepper (2.6)

b0 = b1 = · · · = br−1 := 0

results in the r-step Backward Differentiation Formula, denoted BDFr:

r∑
j=0

aju
(k+j) = (∆t)brΨ

(
tk+r ; u(k+r)

)
The coefficients br; a0, . . . , ar are chosen to maximize the order of accuracy.

Proposition 2.4.3. (Backward Differentiation Formulas – Order of Accuracy)

The r-step Backward Differentiation Formula, BDFr, has order r.
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Table 2.4: Backward Differentiation Formula LM Timesteppers [77]

BDF1 : u(k+1) − u(k) = (∆t)Ψ(k+1)

BDF2 : 3
2
u(k+2) − 2u(k+1) + 1

2
u(k) = (∆t)Ψ(k+2)

BDF3 : 11
6
u(k+3) − 3u(k+2) + 3

2
u(k+1) − 1

3
u(k) = (∆t)Ψ(k+3)

BDF4 : 25
12
u(k+4) − 4u(k+3) + 3u(k+2) − 4

3
u(k+1) + 1

4
u(k) = (∆t)Ψ(k+4)

2.5 Explicit Runge-Kutta (ERK) Timesteppers

Here is another way to construct timesteppers: given current computed solution

u(k) at timestep tk, instead of computing multiple timesteps beyond tk+1 each iteration

(e.g. tk+2, tk+3, ...), one can compute intermediate timesteps tk+αi
where 0 ≤ αi ≤ 1

in order to determine u(k+1) in a single step. The ith intermediate timestep is handled

in its own stage denoted by Ki. Such timesteppers are known as Runge-Kutta (RK)

timesteppers [52, 59, 77].

The most computationally stepwise efficient Runge-Kutta methods are explicit [59,

77] in which each successive stage Ki depends only on previous stages K1, . . . , Ki−1.

The resulting code only involves function evaluations at each iteration, which makes

it easier for the programmer to write.

Definition 2.5.1. (Explicit Runge-Kutta Timestepper)

TIMESTEPPER FORMALLYWRITTENOUT:
[
tk := t0 + k(∆t), u(k) := u(tk)

]


K1 = Ψ(tk;u
(k))

K2 = Ψ(tk + α2(∆t);u(k) + (∆t)[β21K1])

K3 = Ψ(tk + α3(∆t);u(k) + (∆t)[β31K1 + β32K2])
...

...
. . .

Ks = Ψ(tk + αs(∆t);u(k) + (∆t)[βs1K1 + βs2K2 + · · ·+ βs,s−1Ks−1]

u(k+1) = u(k) + (∆t)[γ1K1 + γ2K2 + · · ·+ γs−1Ks−1 + γsKs]
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TIMESTEPPER WRITTEN

AS A

BUTCHER TABLE:

0

α2 β21

α3 β31 β32

...
...

...
. . .

αs βs1 βs2 · · · βs,s−1

γ1 γ2 · · · γs−1 γs

The above Butcher table notation [49, 50, 59, 77] (first used by John C. Butcher

in [19]) is a concise representation of a Runge-Kutta timestepper.

The matrix [βij]s×s is strictly lower-triangular in an ERK timestepper.

2.6 Implicit Runge-Kutta (IRK) Timesteppers

A Runge-Kutta timestepper is implicit [59, 77] if there is at least one stage that

depends on itself or at least one later stage. This results in having to solve a

(possibly) nonlinear system of algebraic equations each iteration, which is harder to

program correctly and more computationally expensive per timestep. However, the

potential benefits gleaned from that work are nice stability properties that explicit

Runge-Kutta timesteppers completely lack – more on this in Chapter 3.

Definition 2.6.1. (Implicit Runge-Kutta Timestepper)

TIMESTEPPER FORMALLYWRITTENOUT:
[
tk := t0 + k(∆t), u(k) := u(tk)

]


K1 = Ψ(tk + α1(∆t);u(k) + (∆t)[β11K1 + β12K2 + · · ·+ β1sKs]

K2 = Ψ(tk + α2(∆t);u(k) + (∆t)[β21K1 + β22K2 + · · ·+ β2sKs]

K3 = Ψ(tk + α3(∆t);u(k) + (∆t)[β31K1 + β32K2 + · · ·+ β3sKs]
...

...
. . .

Ks = Ψ(tk + αs(∆t);u(k) + (∆t)[βs1K1 + βs2K2 + · · ·+ βssKs]

u(k+1) = u(k) + (∆t)[γ1K1 + γ2K2 + · · ·+ γs−1Ks−1 + γsKs]
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TIMESTEPPER WRITTEN

AS A

BUTCHER TABLE:

α1 β11 β12 · · · β1,s−1 β1s

α2 β21 β22 · · · β2,s−1 β2s

α3 β31 β32 · · · β3,s−1 β3s

...
...

...
. . .

...
...

αs βs1 βs2 · · · βs,s−1 βss

γ1 γ2 · · · γs−1 γs

The above Butcher table notation [49, 50, 59, 77] (first used by John C. Butcher

in [19]) is a concise representation of a Runge-Kutta timestepper.

2.7 Runge-Kutta Order Conditions

As we’ll see later on, several low-order Runge-Kutta timesteppers can easily be

derived directly from an appropriate quadrature scheme. Such constructions for

arbitrary timesteppers are not as straightforward. Instead, they can be constructed

by solving an algebraic nonlinear system of equations involving the Butcher table

values called the Runge-Kutta (RK) order conditions [59, 77].

In the next two subsections, we will hand-derive the low-order conditions for 2-

stage timesteppers. Afterwards, we’ll present a table of order conditions that apply

to any Runge-Kutta timestepper.

2.7.1 1st-Order Conditions for 2-stage IRK Timestepper

Consider the generic 2-stage IRK timestepper with Ψ being sufficiently smooth:
K1 = Ψ(tk + α1(∆t);u(k) + (∆t)[β11K1 + β12K2])

K2 = Ψ(tk + α2(∆t);u(k) + (∆t)[β21K1 + β22K2])

u(k+1) = u(k) + (∆t)[γ1K1 + γ2K2]

(2.6)

We rewrite the computed solution at tk+1 using a 2-variable Taylor expansion:

u(k+1) = u(k) + γ1(∆t)K1 + γ2(∆t)K2

2TE
= u(k) + γ1(∆t)

[
Ψ(k) +O((∆t)1)

]
+γ2(∆t)

[
Ψ(k) +O((∆t)1)

] (2.7)
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Collecting like terms results in:

u(k+1) = u(k) + (∆t)Ψ(k) · [γ1 + γ2] +O((∆t)2) (2.8)

Now we rewrite the exact solution at tk+1 using a 1-variable Taylor expansion with

the assumption that the computed solution at tk is exact (i.e. u(k) = u(tk)):

u(tk+1) = u(tk +∆t)

1TE
= u(tk) + (∆t)u′(tk) +O((∆t)2)

MIV P
= u(k) + (∆t)Ψ(k) +O((∆t)2)

(2.9)

Then we collect terms:

u(tk+1) = u(k) + (∆t)Ψ(k) · [1] +O((∆t)2) (2.10)

Comparing terms between u(k+1) and u(tk+1) yield the 1st-order RK conditions for

any 2-stage Runge-Kutta timestepper:

γ1 + γ2 = 1 (2.11)

2.7.2 2nd-Order Conditions for 2-stage IRK Timestepper

Consider the generic 2-stage IRK timestepper with Ψ being sufficiently smooth:
K1 = Ψ(tk + α1(∆t);u(k) + (∆t)[β11K1 + β12K2])

K2 = Ψ(tk + α2(∆t);u(k) + (∆t)[β21K1 + β22K2])

u(k+1) = u(k) + (∆t)[γ1K1 + γ2K2]

(2.12)

We rewrite the computed solution at tk+1 using a 2-variable Taylor expansion:

u(k+1) = u(k) + γ1(∆t)K1 + γ2(∆t)K2

2TE
= u(k) + γ1(∆t)

 Ψ(k) + α1(∆t)dΨ
(k)

dt

+(∆t)(β11K1 + β12K2)
dΨ(k)

du
+O((∆t)2)


+γ2(∆t)

 Ψ(k) + α2(∆t)dΨ
(k)

dt

+(∆t)(β21K1 + β22K2)
dΨ(k)

du
+O((∆t)2)


(2.13)
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Collecting like terms results in:

u(k+1) = u(k) + (∆t)Ψ(k) · [γ1 + γ2] + (∆t)2 dΨ
(k)

dt
· [γ1α1 + γ2α2]

+ (∆t)2 dΨ
(k)

du
· [(γ1β11 + γ2β21)K1 + (γ1β12 + γ2β22)K2]

+ O((∆t)3)

(2.14)

Now we rewrite the exact solution at tk+1 using a 1-variable Taylor expansion with

the assumption that the computed solution at tk is exact (i.e. u(k) = u(tk)):

u(tk+1) = u(tk +∆t)

1TE
= u(tk) + (∆t)u′(tk) +

1
2!
(∆t)2u′′(tk) +O((∆t)3)

MIV P
= u(k) + (∆t)Ψ(k) + 1

2
(∆t)2 dΨ

(k)

dt
+O((∆t)3)

(2.15)

Then we collect terms:

u(tk+1) = u(k) + (∆t)Ψ(k) · [1] + (∆t)2 dΨ
(k)

dt
·
[
1
2

]
+O((∆t)3) (2.16)

Comparing terms between u(k+1) and u(tk+1) yield the 2nd-order RK conditions

for any 2-stage Runge-Kutta timestepper:

γ1 + γ2 = 1, γ1α1 + γ2α2 =
1

2
(2.17)

Notice that the 2nd-order RK conditions contain the 1st-order RK condition.

2.7.3 General RK Order Conditions

With an understanding of how the 1st-order and 2nd-order RK conditions arise

from a 2-stage Runge-Kutta timestepper, one can generalize these order conditions

for an arbitrary s-stage timestepper. Moreover, application of more tedious Taylor

expansions yield 3rd-order RK conditions or higher. Table 2.5 lists all the order

conditions up to 4th-order [59].

The order conditions are cumulative in the sense that all previous order conditions

are automatically included.
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Table 2.5: Runge-Kutta Order Conditions [59]

1st-order:
s∑

j=1

γj = 1

2nd-order:
s∑

j=1

γj = 1,
s∑

j=1

γjαj =
1

2

3rd-order:
s∑

j=1

γj = 1,
s∑

j=1

γjαj =
1

2
,

s∑
i=1

s∑
j=1

γiβijαj =
1

6
s∑

j=1

γj = 1,
s∑

j=1

γjαj =
1

2
,

s∑
i=1

s∑
j=1

γiβijαj =
1

6

4th-order:
s∑

j=1

γjα
3
j =

1

4
,

s∑
i=1

s∑
j=1

γiαiβijαj =
1

8
,

s∑
i=1

s∑
j=1

γiβijαj =
1

12
,

s∑
i=1

s∑
j=1

s∑
k=1

γiβijβjkαk =
1

24

2.8 Common ERK Timesteppers

2.8.1 Forward Euler Timestepper

The simplest ERK timestepper is the Forward Euler (FE) timestepper [52, 59, 77].

We start with the integral form of u(tk+1):

u(tk+1) = u(tk) +

∫ tk+1

tk

Ψ(τ ;u(τ)) dτ (2.18)

We approximate the integral using left-corner rectangular quadrature:∫ tk+1

tk

Ψ(τ ;u(τ)) dτ ≈ (∆t)Ψ(tk;u(tk)) = (∆t)Ψ(k) (2.19)

Upon applying this quadrature we have the desired timestepper:

u(k+1) = u(k) + (∆t)Ψ(k) ⇐⇒
0 0

1
⇐⇒

0

1
(2.20)

Going forward, unless it’s more confusing than helpful, we leave blank any zero

entries in matrix [βij]s×s as we did above in (2.20) with the rightmost Butcher table.

Proposition 2.8.1. (Forward Euler Timestepper – Order of Accuracy)

Forward Euler is a first-order timestepper.
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Proof. Compute Forward Euler’s local truncation error (LTE) via a one-variable Tay-

lor expansion (1TE) – see Appendix. Then use the Model IVP (MIVP) to relate the

RHS Ψ to u′ at timestep t = tk:

LTEFE := u(tk+1)− u(k+1) where u(k) := u(tk)

= u(tk +∆t)− u(k+1)

FE
= u(tk +∆t)−

[
u(k) + (∆t)Ψ(k)

]
1TE
=

[
u(tk) + (∆t)u′(tk) +

1
2!
(∆t)2u′′(τk)

]
−
[
u(k) + (∆t)Ψ(k)

]
MIV P
=

[
u(tk) + (∆t)Ψ(k) + 1

2!
(∆t)2u′′(τk)

]
−
[
u(k) + (∆t)Ψ(k)

]
= 1

2!
(∆t)2u′′(τk) where τk ∈ [tk, tk+1]

(2.21)

∴ LTEFE = O ((∆t)2).

2.8.2 Explicit Midpoint Timestepper

The Explicit Midpoint (EM) timestepper is among the simplest two-stage Runge-

Kutta schemes [59, 77]:
K1 = Ψ(tk, u

(k))

K2 = Ψ(tk +
1
2
(∆t), u(k) + 1

2
(∆t)K1)

u(k+1) = u(k) + (∆t)K2

⇐⇒

0

1
2

1
2

0 1

(2.22)

Its Butcher table values are one solution of the 2nd-order RK conditions.

Its name comes from letting Ψ be solely time-dependent:

u(k+1) = u(k) + (∆t)Ψ(k+1/2) (2.23)

The last term in this simplified version of the timestepper is precisely Midpoint

quadrature applied to the integral
∫ tk+1

tk
Ψ(τ) dτ .

Proposition 2.8.2. (Explicit Midpoint Timestepper – Order of Accuracy)

Explicit Midpoint is a second-order timestepper.
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Proof. Compute Explicit Midpoint’s local truncation error:

LTEEM := u(tk+1)− u(k+1) where u(k) := u(tk) (2.24)

starting with one-variable (1TE) & two-variable (2TE) Taylor expansions:

= u(tk +∆t)− u(k+1)

EM
= u(tk +∆t)−

[
u(k) + (∆t)Ψ

(
tk +

1
2
(∆t);u(k) + 1

2
(∆t)Ψ(k)

)]
2TE
= u(tk +∆t)− u(k)

−
{
(∆t)

[
Ψ(k) +

[
1
2
(∆t)

]
Ψ

(k)
t +

[
1
2
(∆t)Ψ(k)

]
Ψ

(k)
u +O ((∆t)2)

]}
1TE
= u(tk) + (∆t)u′(tk) +

1
2!
(∆t)2u′′(tk) +O ((∆t)3)

−
{
u(k) + (∆t)Ψ(k) + 1

2
(∆t)2

[
Ψ

(k)
t +Ψ

(k)
u Ψ(k)

]
+O ((∆t)3)

}
(2.25)

Now use a two-variable Chain Rule (2CR) and then use the Model IVP (MIVP)

to relate the RHS Ψ to u′ at timestep t = tk:

2CR
= u(k) + (∆t)u′(tk) +

1
2!
(∆t)2

[
Ψ

(k)
t +Ψ

(k)
u u′(tk)

]
+O ((∆t)3)

−
{
u(k) + (∆t)Ψ(k) + 1

2
(∆t)2

[
Ψ

(k)
t +Ψ

(k)
u Ψ(k)

]
+O ((∆t)3)

}
MIV P
= u(k) + (∆t)Ψ(k) + 1

2!
(∆t)2

[
Ψ

(k)
t +Ψ

(k)
u Ψ(k)

]
+O ((∆t)3)

−
{
u(k) + (∆t)Ψ(k) + 1

2
(∆t)2

[
Ψ

(k)
t +Ψ

(k)
u Ψ(k)

]
+O ((∆t)3)

}
= O ((∆t)3)

(2.26)

∴ LTEEM = O ((∆t)3).

2.8.3 Classic RK4 Timestepper

The earliest high-order ERK timestepper is Classic RK4 [52, 59, 77]:

K1 = Ψ(tk, u
(k))

K2 = Ψ(tk +
1
2
(∆t), u(k) + 1

2
(∆t)K1)

K3 = Ψ(tk +
1
2
(∆t), u(k) + 1

2
(∆t)K2)

K4 = Ψ(tk + (∆t), u(k) + (∆t)K3)

u(k+1) = u(k) + (∆t)
[
1
6
K1 +

1
3
K2 +

1
3
K3 +

1
6
K4

]
⇐⇒

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

(2.27)
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Unlike Forward Euler, Classic RK4 was not originally derived using quadrature.

Instead, its Butcher table values were found as one solution of the 4th-order RK

conditions. That said, letting Ψ depend only on t reduces Classic RK4 to a simpler

form that reveals the underlying quadrature scheme for approximating
∫ tk+1

tk
Ψ(τ) dτ

is Simpson’s Rule [52, 77]:

u(k+1) = u(k) + (∆t)
[
1
6
Ψ(k) + 2

3
Ψ(k+1/2) + 1

6
Ψ(k+1)

]
(2.28)

Classic RK4 is a 4th-order timestepper [52, 77].

2.9 Common IRK Timesteppers

2.9.1 Backward Euler Timestepper

The simplest IRK timestepper is the Backward Euler (BE) timestepper [52, 59, 77].

We start with the integral form of u(tk+1):

u(tk+1) = u(tk) +

∫ tk+1

tk

Ψ(τ ;u(τ)) dτ (2.29)

We approximate the integral using right-corner rectangular quadrature:∫ tk+1

tk

Ψ(τ ;u(τ)) dτ ≈ (∆t)Ψ(tk+1;u(tk+1)) = (∆t)Ψ(k+1) (2.30)

Upon applying this quadrature we have the desired timestepper:

u(k+1) = u(k) + (∆t)Ψ(k+1) ⇐⇒
1 1

1
(2.31)

Proposition 2.9.1. (Backward Euler Timestepper – Order of Accuracy)

Backward Euler is a first-order timestepper.

Proof. Compute Backward Euler’s local truncation error:

LTEBE := u(tk+1)− u(k+1) where u(k) := u(tk) (2.32)
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via two applications of one-variable Taylor expansion (1TE). Use the Model IVP

(MIVP) to relate the RHS Ψ to u′ at timestep t = tk+1:

= u(tk +∆t)− u(k+1)

BE
= u(tk +∆t)−

[
u(k) + (∆t)Ψ(k+1)

]
1TE
=

[
u(tk) + (∆t)u′(tk) +

1
2!
(∆t)2u′′(τk)

]
−
[
u(k) + (∆t)Ψ(k+1)

]
MIV P
=

[
u(tk) + (∆t)u′(tk) +

1
2!
(∆t)2u′′(τk)

]
−
[
u(k) + (∆t)u′(tk+1)

]
tk+1
=

[
(∆t)u′(tk) +

1
2!
(∆t)2u′′(τk)

]
− [(∆t)u′(tk +∆t)]

1TE
=

[
(∆t)u′(tk) +

1
2!
(∆t)2u′′(τk)

]
− [(∆t)u′(tk) + (∆t)2u′′(ξk)]

= 1
2!
(∆t)2u′′(τk)− (∆t)2u′′(ξk) where τk, ξk ∈ [tk, tk+1]

(2.33)

∴ LTEBE = O ((∆t)2).

2.9.2 Trapezoidal Timestepper

Another basic IRK timestepper is the Trapezoidal (TR) timestepper [52, 59, 77].

Integral approximation is employed via trapezoidal quadrature:∫ tk+1

tk

Ψ(τ ;u(τ)) dτ ≈ (∆t)

[
1

2
Ψ(k) +

1

2
Ψ(k+1)

]
(2.34)

Upon applying this quadrature we have the desired timestepper:

u(k+1) = u(k) + (∆t)

[
1

2
Ψ(k) +

1

2
Ψ(k+1)

]
⇐⇒

0

1 1
2

1
2

1
2

1
2

(2.35)

Proposition 2.9.2. (Trapezoidal Timestepper – Order of Accuracy)

Trapezoidal is a second-order timestepper.

Proof. Compute Trapezoidal’s local truncation error starting with an one-variable

Taylor expansion (1TE) of u(tk +∆t) and using the Model IVP (MIVP) to relate the

RHS Ψ to u′ at timesteps t = tk & t = tk+1:
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LTETR := u(tk+1)− u(k+1) where u(k) := u(tk)

= u(tk +∆t)− u(k+1)

TR
= u(tk +∆t)−

[
u(k) + 1

2
(∆t)Ψ(k) + 1

2
(∆t)Ψ(k+1)

]
1TE
=

[
u(tk) + (∆t)u′(tk) +

1
2!
(∆t)2u′′(tk) +

1
3!
(∆t)3u′′′(τk)

]
−
[
u(k) + 1

2
(∆t)Ψ(k) + 1

2
(∆t)Ψ(k+1)

]
=

[
(∆t)u′(tk) +

1
2!
(∆t)2u′′(tk) +

1
3!
(∆t)3u′′′(τk)

]
−
[
1
2
(∆t)Ψ(k) + 1

2
(∆t)Ψ(k+1)

]
MIV P
=

[
(∆t)u′(tk) +

1
2!
(∆t)2u′′(tk) +

1
3!
(∆t)3u′′′(τk)

]
−
[
1
2
(∆t)u′(tk) +

1
2
(∆t)u′(tk +∆t)

]
=

[
1
2
(∆t)u′(tk) +

1
2!
(∆t)2u′′(tk) +

1
3!
(∆t)3u′′′(τk)

]
−
[
1
2
(∆t)u′(tk +∆t)

]

(2.36)

Now perform a single-variable Taylor expansion of u′(tk +∆t) and simplify:

1TE
=

[
1
2
(∆t)u′(tk) +

1
2!
(∆t)2u′′(tk) +

1
3!
(∆t)3u′′′(τk)

]
−
[
1
2
(∆t)u′(tk) +

1
2
(∆t)2u′′(tk) +

1
4
(∆t)3u′′′(ξk)

]
= 1

3!
(∆t)3u′′′(τk)− 1

4
(∆t)3u′′′(ξk) where τk, ξk ∈ [tk, tk+1]

(2.37)

∴ LTETR = O ((∆t)3).

2.10 Common IRK Timesteppers built from Collocation

2.10.1 (Continuous) Collocation

The construction of higher-order IRK timesteppers by hand merely from the

Runge-Kutta order conditions is extremely painful at best. It can be automated with

Mathematica® [84] or Maple® [83], but computation times can be long. Fortunately,

the notion of collocation allows one to easily construct such an IRK timestepper using

only a selected set of quadrature points and then building a polynomial that acts as

a continuous solution to (MIVP) at the quadrature points [50, 59]:
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Definition 2.10.1. Let the collocation points c1, · · · , cs ∈ [0, 1] be distinct. Then the

s-degree collocation polynomial p(t) :=
∑s

j=0 pj · (t− tk)
j satisfies: p(tk) = u(k)

p′(tk + cj∆t) = Ψ(tk + cj∆t; p(tk + cj∆t)) for j = 1, · · · , s

Computing p(tk+1) generates the corresponding collocation timestepper.

Collocation always generates an IRK timestepper [50, 59]:

Lemma 2.10.1. (Collocation-to-IRK Lemma)

Every collocation timestepper is an IRK timestepper.

Proof. See [59].

However, the converse is not true – not every IRK timestepper can be constructed

via collocation. See [59] for an example.

2.10.2 Discontinuous Collocation

Relaxing the polynomial degree and continuity conditions a bit in Continuous

Collocation allows entire classes of IRK timesteppers to be generated that would not

otherwise [50]:

Definition 2.10.2. Let the collocation points c2, · · · , cs−1 ∈ [0, 1] be distinct and let

d1, ds ∈ R. Then the (s − 2)-degree discontinuous collocation polynomial p(t) :=∑s−2
j=0 pj · (t− tk)

j satisfies:
p(tk) = u(k) − d1(∆t) [p′(tk)−Ψ(tk; p(tk))]

p′(tk + cj∆t) = Ψ(tk + cj∆t; p(tk + cj∆t)) for j = 2, · · · , (s− 1)

p(tk+1) = u(k+1) + ds(∆t) [p′(tk+1)−Ψ(tk+1; p(tk+1))]

p(tk+1) generates the corresponding discontinuous collocation timestepper.
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2.10.3 Gauss-Legendre Timesteppers

The m-point Gauss-Legendre quadrature scheme [33, 52, 123] (first described in

[39]) is: ∫ 1

−1

f(x) dx ≈
m∑
j=1

wjf(xj) (2.38)

where the weights w1, · · · , wm ∈ R and points x1, · · · , xm ∈ (−1, 1) are chosen so

that the scheme exactly integrates polynomials of degree (2m− 1) and lower.

The Gauss-Legendre family of IRK timesteppers [50, 59] are constructed using

collocation on Gauss-Legendre quadrature points on the interval [0, 1], excluding both

endpoints. The s-stage timestepper, GL(s), has order 2s, which bears the highest

order per stage of all Runge-Kutta timesteppers [59]. GL(1) is also known as Implicit

Midpoint.
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GL(2) was first constructed in 1955 [51] and was the first application of collocation:

Let polynomial p(t) := p0 + p1(t− tk) + p2(t− tk)
2 satisfy:

p(tk) = u(k)

p′(tk + c1∆t) = Ψ(tk + c1∆t; p(tk + c1∆t)) ≡ Ψ(k+c1)

p′(tk + c2∆t) = Ψ(tk + c2∆t; p(tk + c2∆t)) ≡ Ψ(k+c2)

(2.39)

where c1 =
1
2
−

√
3
6

and c2 =
1
2
+

√
3
6

are the 2-point Gauss-Legendre quadrature pts on [0, 1]. Then:


p0 = u(k)

p1 + (2c1∆t)p2 = Ψ(k+c1)

p1 + (2c2∆t)p2 = Ψ(k+c2)

=⇒

 p1 = c2
c2−c1

Ψ(k+c1) − c1
c2−c1

Ψ(k+c2)

(∆t)p2 = −1/2
c2−c1

Ψ(k+c1) + 1/2
c2−c1

Ψ(k+c2)

(2.40)

With the p0, p1, p2 expressed in terms of u(k),Ψ(k+c1),Ψ(k+c2), we compute:

u(k+1) = p(tk +∆t) = p0 + (∆t)p1 + (∆t)2p2

= u(k) + (∆t)
[
1
2
Ψ(k+c1) + 1

2
Ψ(k+c2)

]
=⇒ γ1 =

1
2

and γ2 =
1
2

(2.41)

We evaluate p at the collocation points to determine the matrix entries βij:

p(tk + c1∆t) = p0 + (c1∆t)p1 + (c1∆t)2p2

= u(k) + (∆t)
[
2c1c2−c21
2(c2−c1)

Ψ(k+c1) +
−c21

2(c2−c1)
Ψ(k+c2)

]
= u(k) + (∆t)

[
1
4
Ψ(k+c1) +

(
1
4
−

√
3
6

)
Ψ(k+c2)

]
=⇒ β11 =

1
4

and β12 =
1
4
−

√
3
6

(2.42)

Similarly, evaluating p(tk + c2∆t) yields β21 =
1
4
+

√
3
6

and β22 =
1
4
.

∴
Collocation produces

Butcher table

α1 β11 β12

α2 β21 β22

γ1 γ2

=

1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2
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Below are the 1-stage thru 3-stage Gauss-Legendre timesteppers:

Table 2.6: Gauss-Legendre IRK Timesteppers [50, 59]

TIMESTEPPER: BUTCHER TABLE:

GL(1)
1
2

1
2

1

GL(2)

1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

GL(3)

1
2
−

√
15
10

5
36

2
9
−

√
15
15

5
36
−

√
15
30

1
2

5
36

+
√
15
24

2
9

5
36
−

√
15
24

1
2
+

√
15
10

5
36

+
√
15
30

2
9
+

√
15
15

5
36

5
18

4
9

5
18

2.10.4 Radau Timesteppers

There are several IRK timesteppers based on Radau quadrature points. Quadra-

ture on an interval is called RadauI quadrature if the left boundary of the interval is

one of the quadrature points but the right boundary is not – the vice-versa case is

known as RadauII quadrature.

The m-point RadauI quadrature scheme [33, 52, 123] (first described in [101]) is:∫ 1

−1

f(x) dx ≈ ω−1f(−1) +
m∑
j=2

wjf(xj) (2.43)

where the weights ω−1;w2, · · · , wm ∈ R and points x2, · · · , xm ∈ (−1, 1) are chosen

so that the scheme exactly integrates polynomials of degree (2m− 2) and lower.

The m-point RadauII quadrature scheme [33, 52, 123] (first described in [101]) is:∫ 1

−1

f(x) dx ≈ ω1f(1) +
m∑
j=2

wjf(xj) (2.44)

where the scheme exactly integrates up to (2m− 2)-degree polynomials.
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Several classes of timesteppers can be constructed [50] using collocation on RadauI

or RadauII quadrature points on the interval [0, 1]. An s-stage Radau timestepper

has order (2s− 1). Below are some Radau timesteppers:

Table 2.7: Radau IRK Timesteppers [37, 40]

TIME-

STEP-

PER:

BUTCHER

TABLE:

TIME-

STEP-

PER:

BUTCHER

TABLE:

Radau

IA(2)

0 1
4
−1

4

2
3

1
4

5
12

1
4

3
4

Radau

IA(3)

0 1
9

−20−20
√
6

360
−20+20

√
6

360

6−
√
6

10
1
9

88+7
√
6

360
88−43

√
6

360

6+
√
6

10
1
9

88+43
√
6

360
88−7

√
6

360

1
9

16+
√
6

36
16−

√
6

36

Radau

IB(2)

0 1
8
−1

8

2
3

7
24

3
8

1
4

3
4

Radau

IB(3)

0 1
18

−1−
√
6

36
−1+

√
6

36

6−
√
6

10
52+3

√
6

450
16+

√
6

72
472−217

√
6

1800

6+
√
6

10
52−3

√
6

450
472+217

√
6

1800
16−

√
6

72

1
9

16+
√
6

36
16−

√
6

36

Radau

IIA(2)

1
3

5
12
− 1

12

1 3
4

1
4

3
4

1
4

Radau

IIA(3)

4−
√
6

10
440−35

√
6

1800
296−169

√
6

1800
−2+3

√
6

225

4+
√
6

10
296+169

√
6

1800
440+35

√
6

1800
−2−3

√
6

225

1 16−
√
6

36
16+

√
6

36
1
9

16−
√
6

36
16+

√
6

36
1
9

Radau

IIB(2)

1
3

3
8
− 1

24

1 7
8

1
8

3
4

1
4

Radau

IIB(3)

4−
√
6

10
16−

√
6

72
328−167

√
6

1800
−2+3

√
6

450

4+
√
6

10
328+167

√
6

1800
16+

√
6

72
−2−3

√
6

450

1 85−10
√
6

180
85+10

√
6

180
1
18

16−
√
6

36
16+

√
6

36
1
9

Other variants exist, such as Radau I and Radau II [20], but are omitted here.
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2.10.5 Lobatto Timesteppers

Quadrature on an interval is called Lobatto quadrature (or LobattoIII quadrature)

if both boundaries of the interval are quadrature points.

The m-point Lobatto quadrature scheme [33, 52, 123] (first seen in [79]) is:∫ 1

−1

f(x) dx ≈ ω−1f(−1) + ω1f(1) +
m∑
j=3

wjf(xj) (2.45)

where the scheme exactly integrates up to (2m− 3)-degree polynomials.

Several classes of s-stage Lobatto timesteppers can be constructed using colloca-

tion on Lobatto quadrature points [50] on interval [0, 1] and having order (2s− 2).

Table 2.8: Lobatto IRK Timesteppers [19, 21, 24, 37, 40]

TIMESTEPPER:
BUTCHER

TABLE:
TIMESTEPPER:

BUTCHER

TABLE:

Lobatto IIIA(2)

0 0 0

1 1
2

1
2

1
2

1
2

Lobatto IIIB(2)

0 1
2

0

1 1
2

0

1
2

1
2

Lobatto IIIA(3)

0 0 0 0

1
2

5
24

1
3
− 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

Lobatto IIIB(3)

0 1
6
−1

6
0

1
2

1
6

1
3

0

1 1
6

5
6

0

1
6

2
3

1
6

Lobatto IIIC(2)

0 1
2
−1

2

1 1
2

1
2

1
2

1
2

Lobatto IIIS(2)

(σ = 1/2)

[21, 40]

0 1
4

0

1 1
2

1
4

1
2

1
2

Lobatto IIIC(3)

0 1
6
−1

3
1
6

1
2

1
6

5
12
− 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

Lobatto IIIS(3)

(σ = 1/2)

[21, 40]

0 1
12
− 1

12
0

1
2

3
16

1
3
− 1

48

1 1
6

3
4

1
12

1
6

2
3

1
6

Other variants exist, such as Lobatto IIIC∗ [19, 37], but are omitted.
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2.11 Diagonally Implicit Runge-Kutta (DIRK) Timesteppers

An s-stage IRK timestepper with a lower-triangular stage matrix [βij]s×s is called

a diagonally implicit Runge-Kutta (DIRK) timestepper [3, 49, 66]:

Definition 2.11.1. (Diagonally Implicit Runge-Kutta Timestepper)

TIMESTEPPER WRITTEN

AS A

BUTCHER TABLE:

α1 β11

α2 β21 β22

...
...

...
. . .

αs βs1 βs2 · · · βss

γ1 γ2 · · · γs

DIRK timesteppers are more efficient per timestep than same-stage fully IRK

timesteppers because each Newton system can be solved one stage at a time [3, 66].

Table 2.9: DIRK timesteppers by Spijker [68], Scherer [109] and Miller [88]

TIMESTEPPER: BUTCHER TABLE: ORDER:

Spijker’s DIRK(2)

1
2

1
2

3
2
−1

2
2

−1
2

3
2

1

Scherer’s DIRK(2)

1
3

1
3

7
12

1
3

1
4

1
3

2
3

2

Miller’s DIRK(2)

1
3

1
3

1 3
4

1
4

3
4

1
4

2

Miller’s DIRK(3)

1 1

1
3
− 1

12
5
12

1 0 3
4

1
4

0 3
4

1
4

2

Consult [66] for a comprehensive list of DIRK timesteppers from 1971-2016.
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2.12 Singly Diagonally Implicit Runge-Kutta (SDIRK) Timesteppers

DIRK timesteppers with identical main diagonal entries are known as singly di-

agonally implicit Runge-Kutta (SDIRK) timesteppers [3, 49, 66]:

Definition 2.12.1. (Singly Diagonally Implicit Runge-Kutta Timestepper)

TIMESTEPPER WRITTEN

AS A

BUTCHER TABLE:

α1 β

α2 β21 β
...

...
...

. . .

αs βs1 βs2 · · · β

γ1 γ2 · · · γs

SDIRK timesteppers are nice in that for each timestep, the Jacobian matrix can

be LU-factored once and reused every Newton iteration [3, 49].

Table 2.10: SDIRK timesteppers by Geng [40] and Crouzeix [3]

TIME-

STEPPER:
BUTCHER TABLE: ORDER:

Geng’s

SDIRK(2)

1
4

1
4

3
4

1
2

1
4

1
2

1
2

2

Crouzeix’s

SDIRK(2)

1
2
+ 1

2
√
3

1
2
+ 1

2
√
3

1
2
− 1

2
√
3
− 1√

3
1
2
+ 1

2
√
3

1
2

1
2

2

Crouzeix’s

SDIRK(3)

ρ ρ

ρ+ ρ− ρ

1 ρ1 ρ2 ρ

ρ1 ρ2 ρ



ρ ∈
(
1
6
, 1
2

)
ρ3 − 3ρ2 + 3

2
ρ− 1

6
= 0

ρ+ := 1
2
(1 + ρ), ρ− := 1

2
(1− ρ)

ρ1 := −(6ρ2 − 16ρ+ 1)/4

ρ2 := (6ρ2 − 20ρ+ 5)/4

3

Consult [66] for a comprehensive list of SDIRK timesteppers from 1974-2016.
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CHAPTER III

TIMESTEPPERS: CONSISTENCY, STABILITY & INVARIANCE

While minimization of the global error in the computed solution is the goal when

selecting a timestepper and timestep size, some problems possess an invariant quantity

or qualitative behavior that we expect to be preserved when applying a timestepper.

Moreover, we desire to use timesteppers that are “reliable” even when using very

coarse timestep sizes. This chapter details the properties that a timestepper must

have in order to achieve some of these expectations.

3.1 Consistency

As a basic measure of a reasonable timestepper, when the timestep size ∆t shrinks

to zero, we expect its local truncation error size to decay to zero faster than ∆t:

Definition 3.1.1. A timestepper is consistent [77] if its LTE is o(∆t). That is,

∣∣LTE
∆t

∣∣→ 0 as ∆t→ 0

Naturally, non-consistent timesteppers should never be used at all.

3.1.1 Consistency w.r.t. Linear Multistep Timesteppers

Recall the general r-step linear multistep timestepper for the model IVP (MIVP):

LMr :
r∑

j=0

aju
(k+j) = (∆t)

r∑
j=0

bjΨ
(k+j) (3.1)

Assuming that u and Ψ are sufficiently smooth, that the computed solution is

exact for the previous timesteps, and that ar = 1 to ensure unique coefficients, we
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compute its local truncation error via a one-variable Taylor expansion (1TE):

LTELMr := u(tk + r∆t)− u(k+r)

LMr
= u(tk + r∆t)−

[∑r
j=0(∆t)bjΨ

(k+j) −
∑r−1

j=0 aju
(k+j)

]
MIV P
= u(tk + r∆t)−

[∑r
j=0(∆t)bju

′(tk + j∆t)−
∑r−1

j=0 aju(tk + j∆t)
]

1TE
= u(tk) + r(∆t)u′(tk) +

1
2!
(r∆t)2u′′(τk,−1)

−(∆t)
∑r

j=0 bj [u
′(tk) + j(∆t)u′′(τk,j)]

+
∑r−1

j=0 aj
[
u(tk) + j(∆t)u′(tk) +

1
2!
(j∆t)2u′′(τk,j+r+1)

]
=

[
1 +

∑r−1
j=0 aj

]
u(tk) + (∆t)

[
r +

∑r−1
j=0 jaj −

∑r
j=0 bj

]
u′(tk)

+(∆t)2
[

1
2!
ru′′(τr,−1)−

∑r
j=0 jbju

′′(τk,j) +
∑r−1

j=0
1
2!
j2aju

′′(τk,j+r+1)
]

ar=
[∑r

j=0 aj

]
u(tk) + (∆t)

[∑r
j=0 jaj −

∑r
j=0 bj

]
u′(tk)

+(∆t)2
[

1
2!
ru′′(τr,−1)−

∑r
j=0 jbju

′′(τk,j) +
∑r−1

j=0
1
2!
j2aju

′′(τk,j+r+1)
]

(3.2)

For LMr, it is consistent precisely when the u(tk) and ut(tk) coefficients of LTELMr

are both zero:

r∑
j=0

aj = 0 and
r∑

j=0

jaj =
r∑

j=0

bj (3.3)

In fact, the consistency requirements can be stated more concisely [77] by defining

the following useful polynomials:

ρLMr(ζ) :=
r∑

j=0

ajζ
j and σLMr(ζ) :=

r∑
j=0

bjζ
j where ζ ∈ C (3.4)

In terms of these polynomials, LMr is consistent if these two conditions hold:

ρLMr(1) = 0 and ρ′LMr(1) = σLMr(1) (3.5)

3.1.2 Consistency w.r.t. Runge-Kutta Timesteppers

Since the s-stage Runge-Kutta (RK(s)) timestepper is of the form:

u(k+1) = u(k) + (∆t)
s∑

i=1

γiKi where Ki := Ψ

(
tk+αi

; u(k) + (∆t)
s∑

j=1

βijKj

)
(3.6)
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It can be viewed as a 1-step linear multistep timestepper with

ρRK(s)(ζ) := ζ − 1 and σRK(s)(ζ) :=
s∑

j=1

γjζ
j (3.7)

Clearly, ρRK(s)(1) = 0. Hence, a Runge-Kutta timestepper is consistent if

s∑
j=1

γj = 1 (3.8)

Notice that consistency coincides with the 1st-order RK condition.

3.2 Zero-Stability

In practice, a timestepper may not necessarily work well at all for certain systems.

In fact, some timesteppers (even if they’re high-order) cannot handle the simplest

differential equation of all [77]:

(TIVP0):

 u′(t) = 0

u(0) = 0
(3.9)

The exact solution of (TIVP0) is obviously u(t) = 0.

Definition 3.2.1. An r-step timestepper is zero-stable if ∀∆t > 0, applying it to

(TIVP0) with starting timestep data

u(0) = 0, u(1) = u(2) = · · · = u(r−1) = ϵ > 0

results in the computed solution remaining uniformly bounded.

This means with a zero-stable timestepper applied to (TIVP0), even if the starting

timestep data is perturbed from zero due to floating-point arithmetic, the computed

solution’s magnitude will never blow up to infinity. Timesteppers that are not zero-

stable should never be used [59], period.

As an example, consider the following two timesteppers – the “bad” one we fab-

ricated, the other one being the 2-step Backward Differentiation Formula [77]:

”Bad”: u(k+2) − 5u(k+1) + 6u(k) = (∆t)Ψ(k)

BDF2 : 3
2
u(k+2) − 2u(k+1) + 1

2
u(k) = (∆t)Ψ(k+2)

(3.10)

with starting timestep data: u(0) = 0, u(1) = ϵ := 10−15
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Proposition 3.2.1. BDF2 is zero-stable while “bad” timestepper (3.10) is not.

Proof. Solve the timesteppers’ associated linear difference equations:

Assume u
(k)
BAD = ζk Assume u

(k)
BDF2 = ζk

ζ2 − 5ζ + 6 = 0 3
2
ζ2 − 2ζ + 1

2
= 0

ζ ∈ {5, 6} ζ ∈
{

1
3
, 1
}

u
(k)
BAD = c11 · 5k + c12 · 6k u

(k)
BDF2 = c21 ·

(
1
3

)k
+ c22 · 1k

u
(k)
BAD = 6kϵ

[
1−

(
5
6

)k]
u
(k)
BDF2 =

3
2
ϵ
[
1−

(
1
3

)k]
∴ u

(k)
BAD →∞ as k →∞ ∴ u

(k)
BDF2 → 3

2
ϵ as k →∞

∴ |u(k)
BAD| blows up ∴ |u(k)

BDF2| remains uniformly bounded

∴ BAD is not 0-stable ∴ BDF2 is 0-stable

(3.11)

Note that ∆t doesn’t show up in u
(k)
BAD or u

(k)
BDF2 – so reducing ∆t doesn’t help.

Figure 3.1: Solution Plots of (TIVP0) with u
(k)
BAD (left) and u

(k)
BDF2 (right) and u(1) :=

10−15. The axes are log-lin scale for u
(k)
BAD and lin-lin scale for u

(k)
BDF2.
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3.2.1 Zero-stability w.r.t. Linear Multistep Timesteppers

Recall the general r-step linear multistep timestepper for the model IVP (MIVP):

LMr :
r∑

j=0

aju
(k+j) = (∆t)

r∑
j=0

bjΨ
(k+j) (3.12)

Applying LMr to (TIVP0) results in a homogeneous linear difference equation:

r∑
j=0

aju
(k+j) = 0 (3.13)

Theory [77] dictates to assume the difference equation has a solution of the form

u(k) = ζk (3.14)

Substituting this into the equation and simplifying via division by ζk yields the

polynomial equation

0 =
r∑

j=0

ajζ
j := ρLMr(ζ) (3.15)

Now, since the exact solution to (TIVP0), u(t) = 0, is trivially bounded, we expect

the computed solution u(k) to also be bounded for all timesteps tk. To ensure that

the difference equation has bounded solutions, the polynomial ρLMr(ζ) must satisfy

the following condition [59, 77]:

Definition 3.2.2. A polynomial ρ(ζ) satisfies the root condition provided the following

two conditions are true:

(1) All roots of ρ are in the closed unit disc D := {z ∈ C : |z| ≤ 1}

(2) All repeated roots of ρ are in the open unit disc D := {z ∈ C : |z| < 1}

Armed with this definition, we can now succinctly state the zero-stability require-

ment for LMr:

Theorem 3.2.1. An r-step linear multistep timestepper LMr is zero-stable if and only

if its polynomial ρLMr(ζ) satisfies the root condition.
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Adams-Bashforth and Adams-Moulton timesteppers are all zero-stable due to

their polynomial ρ clearly satisfying the root condition:

ρABr(ζ) = ζr−1(ζ − 1)

ρAMr(ζ) = ζr−1(ζ − 1)
(3.16)

Unfortunately, BDFr is zero-stable [59, 77] only for 1 ≤ r ≤ 6.

3.2.2 Zero-stability w.r.t. Runge-Kutta Timesteppers

Unlike linear multistep timesteppers, Runge-Kutta timesteppers have the good

fortune of guaranteed zero-stability:

Theorem 3.2.2. All Runge-Kutta timesteppers are zero-stable.

Proof. Recall the s-stage Runge-Kutta (RK(s)) timestepper:

u(k+1) = u(k) + (∆t)
s∑

i=1

γiKi, Ki := Ψ

(
tk+αi

; u(k) + (∆t)
s∑

j=1

βijKj

)
(3.17)

Upon applying RK(s) to (TIVP0) with a perturbed IC: u′(t) = 0

u(0) = ϵ
(3.18)

we get (since Ψ = 0 for all t): u(0) = ϵ

u(k+1) = u(k)
(3.19)

It trivially follows that u(k) = ϵ for all timesteps tk which implies that u(k) is

uniformly bounded. Therefore, RK(s) is zero-stable.

3.3 Convergence

Naturally, we expect the timestepper to be convergent in the sense that the error in

the computed solution improves as the timestep size shrinks. However, it is possible
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that it may not converge for certain problems or certain initial conditions. For the

idea of convergence to apply to the broadest set of “reasonable” problems and initial

conditions, we employ the following definition [77]:

Definition 3.3.1. An r-step timestepper is convergent if applying it to (MIVP) subject

to the conditions

(1) RHS Ψ(t;u) is Lipschitz continuous in u

(2) Initial condition u0 is chosen so (MIVP) has a unique solution for t ∈ [t0, T ]

(3) The timestepper’s starting values u(0), u(1), . . . , u(r−1) → u0 as ∆t→ 0

results in |u(T )− u(NT )| → 0 as ∆t→ 0.

3.3.1 Convergence w.r.t. Linear Multistep Timesteppers

In order for linear multistep timesteppers to be convergent, they must be both

consistent and zero-stable [77]:

Theorem 3.3.1. A linear multistep timestepper is convergent if and only if it is con-

sistent and zero-stable.

The proof can be found in [31].

3.3.2 Convergence w.r.t. Runge-Kutta Timesteppers

A lesser requirement holds for Runge-Kutta timesteppers:

Theorem 3.3.2. A Runge-Kutta timestepper is convergent if and only if it is consistent.

See §6.3.4 of [77] for a proof.

3.4 Stiff ODE Systems

Here, we introduce notions of stability stronger than zero-stability that may be

necessary for a given problem.
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Consider the following 2× 2 linear system:

(Stiff-IVP):


u′(t) = Au, A :=

 −51 49

49 −51


u(0) = u0, u0 :=

 2

0

 (3.20)

Then, the exact solution is

u(t) =

 1

−1

 e−2t +

 1

1

 e−100t (3.21)

Moreover, the square matrix A is diagonalizable:

(DIAG) A = V ΛV −1, V =

 1 1

−1 1

 , Λ =

 −100 0

0 −2

 (3.22)

Of course, V −1 is the inverse of matrix V :

(INV ) V V −1 = V −1V = I, V −1 =
1

2

 1 −1

1 1

 , I =

 1 0

0 1

 (3.23)

Clearly, u(t)→

 0

0

 as t→∞.

However, some convergent timesteppers may not exhibit a similar asymptotic

behavior in the computed solution u(k) if the timestep size ∆t is too large.

Case in point, consider solving (Stiff-IVP) using Forward Euler. Then:

u(k+1) FE
= u(k) + (∆t)Ψ(k)

= u(k) +∆t
(
Au(k)

)
= [I + (∆t)A]u(k)

IND
= [I + (∆t)A]k+1u(0)

DIAG
= [I + (∆t)V ΛV −1]k+1u(0)

INV
= [V IV −1 + (∆t)V ΛV −1]k+1u(0)

= V [I + (∆t)Λ]k+1V −1u(0)

(3.24)
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Since u(0), V and V −1 are all constant, it follows that the computed solution

approaches the zero vector provided successive powers of the diagonal matrix, I +

(∆t)Λ, approach the zero matrix – this requirement is satisfied if all its diagonal

entries are less than one in magnitude:

u(k) →

 0

0

 ⇐⇒ ||I + (∆t)Λ|| < 1

⇐⇒

∣∣∣∣∣∣
∣∣∣∣∣∣
 (1− 100∆t) 0

0 (1− 2∆t)

∣∣∣∣∣∣
∣∣∣∣∣∣ < 1

⇐⇒ |1− 100∆t| < 1 and |1− 2∆t| < 1

⇐⇒ ∆t < 1
50

(3.25)

Hence, ∆t must be smaller than 0.02 to assure that the computed solution u(k)

exhibits the same asymptotic decay to the zero vector as the exact solution u(t). A

larger timestep size, say ∆t = 0.1, will cause the computed solution to blow-up in

magnitude (i.e. ||u(k)||2 → ∞), which is not faithful to the decaying behavior of the

exact solution.

Now let’s solve (Stiff-IVP) using GL(1). Then:

u(k+1) GL(1)
= u(k) + (∆t)K1

= u(k) + (∆t)
[
I − 1

2
(∆t)A

]−1
Au(k)

=
[
I + (∆t)

(
I − 1

2
(∆t)A

)−1
A
]
u(k)

IND
=

[
I + (∆t)

(
I − 1

2
(∆t)A

)−1
A
]k+1

u(0)

DIAG
=

[
V V −1 + (∆t)

(
V V −1 − 1

2
(∆t)A

)−1
A
]k+1

u(0)

INV
=

[
V V −1 + (∆t)

(
V V −1 − 1

2
(∆t)V ΛV −1

)−1
V ΛV −1

]k+1

u(0)

= V
[
I + (∆t)

(
I − 1

2
(∆t)Λ

)−1
Λ
]k+1

V −1u(0)

(3.26)

41



Texas Tech University, Josh Engwer, August 2018 (Last Revised September 2022)

Since u(0), V and V −1 are all constant, following the argument used in (3.25),

u(k) →

 0

0

 ⇐⇒ ||I + (∆t)
(
I − 1

2
(∆t)Λ

)−1
Λ|| < 1

⇐⇒

∣∣∣∣∣∣
∣∣∣∣∣∣
 1−50∆t

1+50∆t
0

0 1−∆t
1+∆t

∣∣∣∣∣∣
∣∣∣∣∣∣ < 1

⇐⇒
∣∣1−50∆t
1+50∆t

∣∣ < 1 and
∣∣1−∆t
1+∆t

∣∣ < 1

⇐⇒ ∆t ∈ (0,∞)

(3.27)

So GL(1) imposes no restriction on ∆t. In other words, the computed solution

u(k) will always converge to the zero vector regardless of how large ∆t is. Now

of course, a large ∆t may result in substantial loss of accuracy, but the qualitative

asymptotic behavior will always be correct.

What forced restrictions on ∆t for Forward Euler but not GL(1) is the stiffness

of this particular ODE system [52, 59]:

Definition 3.4.1. An ODE system is stiff if certain timesteppers require a substantially

tiny timestep size ∆t in order for the computed solution error to not blow up in

magnitude.

This definition does not provide a quantitative measure of stiffness by which a

given system can be judged. Here is such a measure for ODE systems [52, 59, 77]:

Definition 3.4.2. The stiffness ratio of a linear ODE system u′(t) = Au is the ratio of

the magnitudes of the largest and smallest eigenvalues of the matrix A.

The stiffness ratio of a non-linear ODE system u′(t) = Ψ(t;u) is the ratio of

the magnitudes of the largest and smallest eigenvalues of the Jacobian matrix ∂Ψ
∂u

associated with the system.

Stiff linear ODE systems have large stiffness ratios. However, large stiffness ra-

tios for non-linear systems may not necessarily indicate that they’re actually stiff –

stiffness correlates only when the linearized system is a sufficiently accurate approxi-

mation. Stiff systems arise from dynamical processes whose rates of change vary on

markedly different time scales [52, 59, 77].
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3.5 A-Stability

Consider the following linear IVP:

(TIVPA):

 u′(t) = λu, Re(λ) < 0

u(0) = 1
(3.28)

The exact solution to (TIVPA) is u(t) = eλt which decays to zero as t → ∞.

Hence, (TIVPA) bears similar asymptotic behavior as (Stiff-IVP), but is simpler to

analyze since the solution is a scalar rather than a vector. We saw in the previous

section that the eigenvalues of the matrix A in a stiff linear IVP play a central role

– here in (TIVPA), λ is the sole eigenvalue of the degenerate 1× 1 matrix λ. Since

eigenvalues can be complex, we allow λ to be possibly complex in (TIVPA).

Armed with this “test” linear IVP, we can now define a notion of stability [59, 77]

stronger than zero-stability:

Definition 3.5.1. A timestepper’s stability function is the function S(z) on the complex

plane such that upon applying the timestepper to (TIVPA),

u(k+1) = [S(λ∆t)]k+1 u(0), where λ ∈ C

Definition 3.5.2. A timestepper is absolutely stable if when applied to (TIVPA) with

a given ∆t and λ ∈ C, |uk+1| → 0 as t→∞ for all initial values u0. This is satisfied

whenever its stability function S(z) satisfies |S(λ∆t)| < 1.

The domain of absolute stability (DAS) of a timestepper is the region in the

complex plane where it is absolutely stable, namely:

Ωstab := {z = λ(∆t) ∈ C : |S(z)| < 1}

A timestepper is A-stable if its DAS contains the left-half plane of C:

Ωstab ⊇ C−Re, where C−Re := {z ∈ C : Re(z) < 0}
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Let’s determine the stability function for Forward Euler by appying it to (TIVPA):

u(k+1) FE
= u(k) + (∆t)Ψ(k)

TIV PA
= u(k) +∆t

(
λu(k)

)
= [1 + λ∆t]u(k)

IND
= [1 + z]k+1u(0) where z := λ∆t

(3.29)

Therefore, the stability function for Forward Euler is

SFE(z) = 1 + z (3.30)

Next, let’s determine its domain of absolute stability:

Ωstab
FE = {z ∈ C : |SFE(z)| < 1}

= {z ∈ C : |1 + z| < 1}

= {z ∈ C : z is in open disk centered at − 1, radius 1}

̸⊇ C−Re

(3.31)

Hence, Forward Euler is not A-stable, and this is precisely why it failed for large

enough timestep size ∆t when applied to (Stiff-IVP):

Figure 3.2: DAS Plot of Forward Euler
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Let’s determine the stability function for GL(1):

u(k+1) GL(1)
= u(k) + (∆t)K1

TIV PA
= u(k) + (∆t)

[
λ

1− 1
2
λ∆t

]
u(k)

=
[
1+ 1

2
λ∆t

1− 1
2
λ∆t

]
u(k)

IND
=

[
1+ 1

2
z

1− 1
2
z

]k+1

u(0) where z := λ∆t

(3.32)

Therefore, the stability function for GL(1) is

SGL(1)(z) =
1 + 1

2
z

1− 1
2
z

(3.33)

Next, let’s determine its domain of absolute stability:

Ωstab
GL(1) = {z ∈ C : |SGL(1)(z)| < 1}

= {z ∈ C :
∣∣∣1+ 1

2
z

1− 1
2
z

∣∣∣ < 1}

= {z ∈ C : |2 + z| < |2− z|}

= {z ∈ C : z is closer to − 2 than to + 2}

= C−Re

(3.34)

Figure 3.3: DAS Plot of GaussLegendre(1)

Hence, GL(1) is A-stable, and this is precisely why it always converges, even for

large timestep size ∆t, when applied to (Stiff-IVP).
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Finally, we determine the stability function for Backward Euler:

u(k+1) BE
= u(k) + (∆t)Ψ(k+1)

TIV PA
= u(k) + (∆t)

[
λu(k+1)

]
=

[
1

1−λ∆t

]
u(k)

IND
=

[
1

1−z

]k+1
u(0) where z := λ∆t

(3.35)

Therefore, the stability function for Backward Euler is SBE(z) =
1

1− z
Next, let’s determine its domain of absolute stability:

Ωstab
BE = {z ∈ C : |SBE(z)| < 1}

= {z ∈ C :

∣∣∣∣ 1

1− z

∣∣∣∣ < 1} = {z ∈ C : |1− z| > 1}

= {z ∈ C : z is outside open disk centered at + 1, radius 1}

⊃ C−Re

(3.36)

Figure 3.4: DAS Plot of Backward Euler

Hence, BE is A-stable.

Discussion of A-stability of linear multistep timesteppers is omitted because, out

of the three linear multistep classes discussed (ABr, AMr, BDFr), only BDF1 and

BDF2 are A-stable [59, 77].
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3.6 A(α)-Stability

Some stiff ODE systems have its eigenvalues on or very close to the negative real

axis. Such systems are considered mildly stiff. With mildly stiff systems, A-stable

timesteppers may be considered overkill. Timesteppers whose domain of absolute

stability includes not the entire left-half complex plane, but solely an infinite sector

containing the origin and the entire negative real axis, are perfectly suitable for mildly

stiff systems [77]:

Definition 3.6.1. A timestepper is A(α)-stable if its DAS contains the set

C−Re
α := {reiθ ∈ C : r ∈ [0,∞) and θ ∈ (π − α, π + α)}

for some α ∈ [0, π/2].

An A-stable timestepper is always A(α)-stable with α = π/2.

BDF3 through BDF6 are not A-stable but A(α)-stable [77], and therefore they

are preferred for mildly stiff systems due to their high order and easier computation

than A-stable IRK timesteppers.

Figure 3.5: DAS Plots of BDF2 (left) and BDF4 (right). The green translucent

region represents C−Re
α for BDF4 [77] with α ≈ 73◦.
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3.7 L-Stability

For some stiff problems, A-stability is not good enough. An even stronger notion

of stability has its place [77]:

Definition 3.7.1. A timestepper is L-stable if it is A-stable and lim
z→∞
|S(z)| = 0.

Geometrically, L-stable timesteppers have the point z = ∞, which is the “north

pole” on the Riemann sphere [106], in the interior of its DAS whereas A-stable

timesteppers have z =∞ merely on the boundary [77].

It’s no surprise that Forward Euler is not L-stable since it’s not A-stable and

lim
z→∞
|SFE(z)| = lim

z→∞
|1 + z| =∞ (3.37)

GL(1) is A-stable, but not L-stable since

lim
z→∞
|SGL(1)(z)| = lim

z→∞

∣∣∣∣1 + 1
2
z

1− 1
2
z

∣∣∣∣ = 1 (3.38)

Backward Euler is L-stable since it’s A-stable and

lim
z→∞
|SBE(z)| = lim

z→∞

∣∣∣∣ 1

1− z

∣∣∣∣ = 0 (3.39)

For stiff ODE systems with a rapid transient, an L-stable timestepper effectively

damps out the transient after the first iteration [52, 77] whereas an A-stable timestep-

per forces the computed solution to honor the transient and, as a result, oscillate about

the true solution for all timesteps.

To illustrate this effect L-stability has on a computed solution versus A-stability,

consider the following stiff IVP, known as the Curtiss-Hirschfelder equation [49]: u′ + 50u = 50 cos t

u(0) = 0
(3.40)

The exact solution is

u(t) = −2500

2501
e−50t +

2500

2501
cos t+

50

2501
sin t (3.41)

Note that the exponential term is the rapid transient in this case.

Just as with A-stability, the only L-stable linear multistep timesteppers are BDF1

(which is Backward Euler) and BDF2 [77].
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Figure 3.6: Solution Plots of Curtiss-Hirschfelder Equation with Trapezoidal (left)

and Backward Euler (right). Notice how the Trapezoidal solution oscillates about

the exact solution.

3.7.1 DAS containing C−Re and more does not imply L-stability

The DAS plots of many L-stable IRK timesteppers contain the entire left-half

complex plane C−Re and then some more:

Figure 3.7: DAS Plots of Lobatto IIIC(2) (left) and Radau IIA(2) (right)

However, the assumption that this behavior implies L-stability is refuted with

Spijker’s DIRK(2) serving as a counterexample:
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Figure 3.8: DAS Plot of Spijker’s DIRK(2)

The issue lies with its stability function:

Spijker’s DIRK(2): S(z) =
z − 1

2z − 1
=⇒ lim

z→∞
|S(z)| = 1

2
̸= 0 (3.42)

3.8 Preservation of Quadratic Invariants

ODE systems in some applications [59] preserve quadratic invariants:

(IVPQ) :

 u′(t) = Au

u(t0) = u0

, A :=

 0 −1

1 0

 , u :=

 u

v

 , u0 :=

 1

0

 (3.43)

Proposition 3.8.1. The following expression is a quadratic invariant for (IVPQ):

Q(u) := uT Iu, where I =

 1 0

0 1


Proof. It suffices to show that Q(u) never changes in time:

d
dt

[
Q(u(t))

]
= d

dt

[
uT Iu

]
IV PQ
= d

dt

[
u2 + v2

]
1CR
= 2u · u′ + 2v · v′

IV PQ
= 2u · (−v) + 2v · (u)

= 0

(3.44)
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Quadratic invariants are key qualitative geometric properties of systems which

leads to the question of which timesteppers, if any, preserve them:

Definition 3.8.1. A timestepper is quadratic invariant preserving (QIP) if when applied

to an ODE system that has a quadratic invariant, the computed value of that invariant

remains the same, in exact arithmetic, for all time. In floating-point arithmetic, the

quadratic invariant error is on the order of machine epsilon, ϵmach.

Timesteppers lacking A-stability tend to lack preservation of quadratic invariants:

Proposition 3.8.2. Forward Euler is not QIP.

Proof. It suffices to show Forward Euler fails to honor quadratic invariant in (IVPQ):

Q
(
u(k+1)

) IV PQ
=

[
u(k+1)

]T
Iu(k+1)

FE
=

[
u(k) + (∆t)Ψ(k)

]T
I
[
u(k) + (∆t)Ψ(k)

]
IV PQ
=

[
u(k)
]T

[I + (∆t)A]T I[I + (∆t)A]u(k)

=
[
u(k)
]T [

I + (∆t)
(
A+ AT

)
+ (∆t)2ATA

]
u(k)

=
[
u(k)
]T

[I + (∆t)2] u(k)

̸= Q
(
u(k)
)

for ∆t ̸= 0

(3.45)

L-stable timesteppers tend to not be QIP:

Proposition 3.8.3. Backward Euler is not QIP.

Proof. It suffices to show Backward Euler fails to honor quadratic invariant in (IVPQ):

Q
(
u(k+1)

) IV PQ
=

[
u(k+1)

]T
Iu(k+1)

BE
=

[
u(k) + (∆t)Ψ(k+1)

]T
I
[
u(k) + (∆t)Ψ(k+1)

]
IV PQ
=

[
u(k)
]T

[I − (∆t)A]−T I[I − (∆t)A]−1u(k)

=
1

[1 + (∆t)2]2
[
u(k)
]T  1 + (∆t)2 0

0 1 + (∆t)2

 u(k)

=
1

1 + (∆t)2
[
u(k)
]T

Iu(k)

̸= Q
(
u(k)
)

for ∆t ̸= 0

(3.46)
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However, some A-stable timesteppers are QIP [50, 59]:

Proposition 3.8.4. GaussLegendre(s) timesteppers are QIP.

Proof. (from §IV.2.1 of [50])

WLOG, let Model Vector IVP (MVIVP) have quadratic invariant Q(u) = uTSu

where matrix S is symmetric due to QFSML (Lemma G.1 in Appendix).

Let p(t) be the s-degree collocation polynomial of GL(s) with its collocation points

c1, · · · , cs identical to the quadrature points of s-point Gauss quadrature. Then:

(∗1) p(tk) = u(k), p(tk +∆t) = u(k+1)

(∗2) d
dt
[Q(p)] = 2pTSp′ which is a (2s− 1)-degree polynomial

(∗3)
s-point Gauss quadrature exactly integrates∫ tk+∆t

tk
[p(τ)]TSp′(τ) dτ =

∑s
j=1 wj[p(tk + cj(∆t))]TSp′(tk + cj(∆t))

(∗4) [u(t)]TSΨ(t; u) = 0 ∀(t, u) due to QIL (Lemma G.2 in Appendix)

Applying (∗1)− (∗4) and relating the RHS Ψ to p′ via the Model Vector IVP,

Q
(
u(k+1)

)
−Q

(
u(k)
)

(∗1)
= Q (p(tk+1))−Q (p(tk))

=
∫ tk+∆t

tk

d

dτ
Q(p(τ)) dτ

(∗2)
= 2

∫ tk+∆t

tk
[p(τ)]TSp′(τ) dτ

(∗3)
= 2

∑s
j=1wj[p(tk + cj(∆t))]TSp′(tk + cj(∆t))

MV IV P
= 2

∑s
j=1wj[p(tk + cj(∆t))]TSΨ(tk + cj(∆t))

(∗4)
= 0

(3.47)

∴ Since timestep tk was arbitrary, Q
(
u(k+1)

)
−Q

(
u(k)
)
= 0 for all timesteps.

∴ GL(s) preserves Q(u).

∴ GL(s) is QIP.
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To help visualize the striking difference between a non-QIP timestepper, say Ex-

plicit Midpoint, and a QIP timestepper, say Implicit Midpoint, the two plots below

compare resulting qualitative behaviors of the solution to the system (IVPQ) with

the unit circle as the quadratic invariant:

Figure 3.9: Solution Plots to (IVPQ) with EM (left) & GL(1) (right)

To the naked eye, the QIP computed solution appears to stay on the unit circle,

but one cannot be certain until the magnitude error is visualized:

Figure 3.10: QIP Error Plots to (IVPQ) with EM (left) & GL(1) (right). Note the

axes are log-lin for EM and lin-lin for GL(1). The error remains near ϵmach for the

QIP timestepper (right) while the non-QIP timestepper’s error (left) grows.
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Given a timestepper’s Butcher table, one can easily determine whether it is QIP

or not via the following theorem [28, 50]:

Theorem 3.8.1. (Cooper’s QIP Theorem)

An s-stage Runge-Kutta timestepper is QIP if its Butcher table satisfies:

γiβij + γjβji = γiγj ∀i, j = 1, . . . , s

A proof can be found in [50].

3.9 Feature Comparison of Common Timesteppers

With a vast catalog of timesteppers to choose from, it’s instructive to summarize

their orders, stability and invariance properties into a table, which is on the next

page. All timesteppers shown in the table are zero-stable.
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Table 3.1: Timestepper Order, Stability & Invariance Summary

TIMESTEPPER: ORDER: A(α)-stable? A-stable? L-stable? QIP?

ABr r No No No No

AMr r + 1 No No No No

BDFr, 1 ≤ r ≤ 2 r Yes Yes Yes No

BDFr, 3 ≤ r ≤ 6 r Yes No No No

Forward Euler 1 No No No No

Explicit Midpoint 2 No No No No

Classic RK4 4 No No No No

Backward Euler 1 Yes Yes Yes No

Trapezoidal 2 Yes Yes No No

Lobatto IIIA(s) 2s− 2 Yes Yes No No

Lobatto IIIB(s) 2s− 2 Yes Yes No No

Lobatto IIIC(s) 2s− 2 Yes Yes Yes No

Lobatto IIIS(s) 2s− 2 Yes Yes No Yes

Radau IA(s) 2s− 1 Yes Yes Yes No

Radau IB(s) 2s− 1 Yes Yes No Yes

Radau IIA(s) 2s− 1 Yes Yes Yes No

Radau IIB(s) 2s− 1 Yes Yes No Yes

GaussLegendre(s) 2s Yes Yes No Yes

Spijker DIRK(2) 1 Yes Yes No No

Miller DIRK(2) 2 Yes Yes Yes No

Miller DIRK(3) 2 Yes Yes Yes No

Geng SDIRK(2) 2 Yes Yes No Yes

Crouzeix SDIRK(2) 2 Yes Yes Yes No

Crouzeix SDIRK(3) 3 Yes Yes Yes No
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3.10 Linear Multistep Timesteppers do not Make the Cut

Linear multistep timesteppers will never be employed in the micromagnetics prob-

lem because their maximum order is only slightly above the stage count. This limi-

tation is expressed by Dahlquist’s 1st Barrier [31, 59]:

Theorem 3.10.1. (Dalhquist’s Order Barrier for LM Timesteppers)

An r-step explicit LM timestepper has order r at best.

An r-step implicit LM timestepper

 has order (r + 1) at best , if r is odd

has order (r + 2) at best , if r is even

Even worse, they are nearly universally not A-stable with the exception of low-

order BDF1 (which is Backward Euler) and BDF2. This observation is generalized

in Dahlquist’s 2nd Barrier [32, 52, 59, 77]:

Theorem 3.10.2. (Dalhquist’s A-Stability Barrier for LM Timesteppers)

No explicit linear multistep timesteppers are A-stable.

A-stable implicit linear multistep timesteppers are 2nd-order at best.

Going from BDF2 to BDF3 drops stability down to A(α)-stability whose DAS

incrementally contracts in BDF4, BDF5 and BDF6 [77]. Worse still, very high order

BDF timesteppers lack zero-stability, rendering them utterly useless [59, 77]. Finally,

none of them preserve quadratic invariants. Therefore, we must choose among the

Runge-Kutta timesteppers.

3.11 ERK Timesteppers do not Make the Cut

In addition, explicit Runge-Kutta timesteppers are avoided altogether due to their

guaranteed lack of A-stability. This guarantee holds because an ERK timestepper’s

stability function S(z) is a polynomial [59, 77] whose modulus blows up for an ever-

increasing modulus of z:

If S(z) is a polynomial, then |S(z)| → ∞ as Re(z)→ −∞ (3.48)
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Therefore, an ERK timestepper’s DAS cannot contain the left-half complex plane.

On the other hand, an IRK timestepper’s stability function S(z) will be a rational

function [59, 77] in z. Hence, if the zeros of S(z) are in the left-half complex plane

and its poles are all in the right-half complex plane, then the Maximum Modulus

Theorem [106] can be utilized to conclude that the DAS contains C−Re and, hence,

the timestepper is A-stable. Besides A-stability, some IRK timesteppers preserve

quadratic invariants while none of the ERK timesteppers do. Hence, an appropriate

IRK timestepper will be sought out for the coupled micromagnetics problem. We

pick this discussion up later in Chapter 5 after a survey of spatial discretization using

finite elements.

3.12 DIRK Timesteppers do not Make the Cut

Even though DIRK timesteppers are implicit, they are only slightly so. While

they are easier to implement and their Newton systems are simpler to solve, a price

is paid for these benefits. This causes some undesirable realities to arise.

To start, some DIRK timesteppers suffer from order reduction in that the order

is actually less than the stage count. Examples shown earlier are Spijker’s DIRK(2)

[68] and Miller’s DIRK(3) [88], both of which have orders one less than their stage

count.

An order barrier when weights γj are all positive was found in 1980 [48, 49]:

Theorem 3.12.1. (Hairer’s Barrier for Positively-weighted DIRK Timesteppers)

A DIRK timestepper with all positive weights γj has order 6 at best.

This is bad news for DIRK timesteppers, but unfortunately the news gets even

worse. Going from a fully IRK timestepper to a DIRK timestepper places many

restrictions on attainable order and stability as this section will point out.

A non-confluent [49] Runge-Kutta timestepper has its α1, · · · , αs all distinct. Ex-

plicit Midpoint and Radau IA(3), are non-confluent whereas Classic RK4 is confluent.

A second order barrier was found for non-confluent DIRK timesteppers in 1993 [5]:
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Theorem 3.12.2. (Al-Rabeh’s Barrier for Non-confluent DIRK Timesteppers) A non-confluent DIRK(s) timestepper

with non-zero weights γ1, · · · , γs

 has order s+ 1 at best , for s ≤ 5

has order s at best , for s ≥ 6

A third barrier by Hairer concerns B-stability (see Appendix M) [48, 49]:

Theorem 3.12.3. (Hairer’s Barrier for B-stable DIRK Timesteppers)

A B-stable DIRK timestepper has order 4 at best.

Going forward, we will never mention B-stability again as L-stability is a suffi-

ciently strong notion of stability for our needs.

Notice that Geng’s SDIRK(2) is the only DIRK timestepper shown earlier that is

QIP [40]. With some of these order barriers affecting stability, perhaps constructing

DIRK timesteppers that are QIP but not necessarily A-stable or L-stable will allow

higher orders than the stage count. Alas, that hope is extinguished thanks to an

order barrier by Geng in 1993 [40]:

Theorem 3.12.4. (Geng’s Barrier for QIP DIRK Timesteppers)

A QIP DIRK timestepper has order 4 at best.

Finally, if these order barriers were not bad enough, a comprehensive list of DIRK

timesteppers [66, 14] reveals that all L-stable DIRK(s) timesteppers have order s at

best, so it does not look promising to find L-stable DIRK(s) timesteppers of order

(s+ 1) or higher.

3.13 SDIRK Timesteppers do not Make the Cut

The situation is dire for SDIRK timesteppers as the four DIRK barriers apply

to SDIRK timesteppers as well. Unfortunately, there is an additional order barrier

specifically for SDIRK timesteppers once again discovered by Hairer in 1980 [48, 49]:

Theorem 3.13.1. (Hairer’s Barrier for Positive-weighted SDIRK Timesteppers)

A SDIRK timestepper with all positive weights γj has order 4 at best.
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Notice the reduction in order (from 6 to 4) going from positively-weighted DIRK to

positively-weighted SDIRK. This is not surprising since requiring the main diagonal

entries to all be equal necessarily reduces possible solutions to the Runge-Kutta order

conditions.

Finally, a comprehensive list of SDIRK timesteppers [66, 14] reveals that all L-

stable SDIRK(s) timesteppers have order s at best, so it does not look promising to

find L-stable SDIRK(s) timesteppers of order (s+ 1) or higher.

3.14 Candidate Timesteppers for the LLG+EC Problem

To summarize, we should not use LM, ERK, DIRK, or SDIRK timesteppers in the

coupled micromagnetics problem. Our remaining choice is to use an IRK timestepper

that is either fully implicit or at least more fully implicit than DIRK and SDIRK

timesteppers. From Table 3.1, the viable choices are:

� Lobatto IIIC(s)

� Lobatto IIIS(s)

� Radau IA(s)

� Radau IB(s)

� Radau IIA(s)

� Radau IIB(s)

� GaussLegendre(s)

More on our eventual choice of timesteppers in Chapter 5.
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CHAPTER IV

FINITE ELEMENTS

4.1 Model PDE: Poisson’s Equation

The finite element method is an involved algorithm, so it behooves us to demon-

strate its utility by applying it to the simplest time-independent 2nd-order scalar PDE

in two spatial dimensions: Poisson’s Equation. The technique is similar when ap-

plied to three spatial dimensions and even one spatial dimension. The overview of

the Finite Element Method and accompanying notation more-or-less follows that of

[44, 74]. Rigorous treatment of finite element methods can be found in [16, 90].

Going forward, the domain Ω ∈ Rd (d ∈ {2, 3}) is assumed to be a bounded and

connected open set with piecewise-smooth boundary ∂Ω and outward normal n.

For this chapter only, the boundary is assumed to partitioned

∂Ω := ΓD ∪ ΓN such that ΓD ∩ ΓN = ∅ (4.1)

where ΓD prescribes homogeneous Dirichlet BC’s and ΓN bears homogeneous Neu-

mann BC’s.

Poisson’s Equation arises in many problems such as electrostatics and steady-state

heat transport. Along with the BC’s, it is:
−∇2u = f in Ω

u = 0 on ΓD

n · ∇u = 0 on ΓN

(4.2)

4.2 The Finite Element Method

Since the Finite Element Method is a long process consisting of many sub-tasks,

we carefully go over the algorithm step-by-step as it applies to Poisson’s Equation.
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4.2.1 STEP 1: Determine Pre-Element Weak Form

Multiply both sides of Poisson’s Equation by a test function u which is zero on

the Dirichlet boundary ΓD, and then integrate both sides over the domain:

−
∫
Ω

u∇2u dx =

∫
Ω

fu dx (4.3)

Perform Integration-by-Parts (IBP) on the integral containing the Laplacian:

−
∮
∂Ω

[u∇u] · n dS +

∫
Ω

∇u · ∇u dx =

∫
Ω

fu dx (4.4)

Split the boundary integral into its partitioned boundary parts:

−
∮
∂Ω

[u∇u] · n dS = −
∫
ΓD

[u∇u] · n dS −
∫
ΓN

[u∇u] · n dS (4.5)

The boundary integral over ΓD is zero since u = 0 on ΓD:∫
ΓD

[u∇u] · n dS =

∫
ΓD

[0 · ∇u] · n dS =

∫
ΓD

0 dS = 0 (4.6)

The boundary integral over ΓN is zero due to the homogeneous Neumann BC:∫
ΓN

[u∇u] · n dS
V A3
=

∫
ΓN

u · [n · ∇u] dS =

∫
ΓN

u · 0 dS = 0 (4.7)

The boundary integrals vanish and we are left with the pre-element weak form:∫
Ω

∇u · ∇u dx =

∫
Ω

fu dx (4.8)

However, we need to specify from which function spaces do u, u and f belong to

ensure these two integrals are well-defined:

f ∈ L2(Ω) := {g : Ω→ R |
∫
Ω
g2 dx <∞}

H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d}

u, u ∈ H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 on ΓD}

(4.9)

We can verify that the integrals are well-defined via the Cauchy-Schwarz and

Triangle Inequalities:∣∣∣∣∫
Ω

uxux dx

∣∣∣∣ CSI

≤
(∫

Ω

(ux)
2 dx

)1/2(∫
Ω

(ux)
2 dx

)1/2
H1

< ∞ ·∞ =∞∣∣∣∣∫
Ω

uyuy dx

∣∣∣∣ CSI

≤
(∫

Ω

(uy)
2 dx

)1/2(∫
Ω

(uy)
2 dx

)1/2
H1

< ∞ ·∞ =∞
(4.10)
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∣∣∣∣∫
Ω

∇u · ∇u dx

∣∣∣∣ =

∣∣∣∣∫
Ω

uxux + uyuy dx

∣∣∣∣
TI

≤
∣∣∣∣∫

Ω

uxux dx

∣∣∣∣+ ∣∣∣∣∫
Ω

uyuy dx

∣∣∣∣
(4.9)
< ∞+∞

= ∞

(4.11)

∣∣∣∣∫
Ω

fu dx

∣∣∣∣ CSI

≤
(∫

Ω

f 2 dx

)1/2(∫
Ω

u2 dx

)1/2
L2

< ∞ ·∞ =∞ (4.12)

Now we can properly state the pre-element weak form of Poisson’s Equation:

Find u ∈ H1
0 (Ω) such that

∫
Ω

∇u · ∇u dx =

∫
Ω

fu dx ∀u ∈ H1
0 (Ω) (4.13)

4.2.2 STEP 2: Generate Mesh from Domain

The next major step is to discretize the domain Ω into a mesh, denoted Ωh. For

our purposes, we will exlusively use triangles in 2D and tetrahedra in 3D. Each

triangle or tetrahedron is called a cell of the mesh. For a rectangular domain, axis-

aligned triangulation [44, 74] works wells:

Figure 4.1: Square Domain (left) and two Axis-Aligned Meshes (middle & right)

Otherwise, Delaunay triangulation [34, 36, 44, 74] is preferred:

FEniCS [80] can perform axis-aligned triangulation while Delaunay triangulation

can be achieved using, for example, CUBIT [12], GMSH [41], NETGEN [110] or

TRIANGLE [113, 114].
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Figure 4.2: Coarse (left) & Fine (right) Delaunay Meshes for Square Domain

In either case, the resulting mesh will not contain any “skinny” triangles [36, 74]

in which one of the angles is near 0◦ or 180◦. The absence of “skinny” triangles

ensures that finite element error estimates [74] are not too loose. In addition, every

pair of adjacent triangles intersect at a common vertex or a common edge.

Similar tetrahedralization schemes [36] are used in 3D to ensure that every pair of

tetrahedra intersect at a common vertex or common edge or common face. Moreover,

care must taken to ensure a tetrahedralization contains no “skinny” tetrahedra, “flat”

tetrahedra and “slivers” [36]. Axis-aligned tetrahedralization for box-shaped domains

is handled in FEniCS [80] and Delaunay tetrahedralization is done with, for instance,

CUBIT [12], GMSH [41], NETGEN [110] or TetGen [115].

Finer meshes with smaller cells will improve accuracy in the computed solution.

Mesh refinement is measured by the cell diameter [44, 74]:

Definition 4.2.1. Given a domain Ω and a corresponding mesh, the cell diameter h > 0

of the mesh is defined as follows:

h := (Maximum edge length of a cell over all cells in the mesh)

The degree of mesh refinement is indicated by smaller values of h.

The mesh of Ω is denoted Ωh.
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4.2.3 STEP 3: Select Appropriate Finite Elements

With the mesh generated, we can now select a finite-dimensional subspace of

H1(Ω), denoted Vh, that is a space of continuous piecewise polynomials up to some

degree defined on the mesh Ωh.

Moreover, define space Vh,0 ⊂ Vh as follows:

Vh,0 := {v ∈ Vh : v = 0 on ∂Ωh} (4.14)

The basis functions of Vh,0, denoted φj, on the NV nodes of the mesh interior

(which for quadratic or higher degree polynomials will require additional points be-

sides the vertices of the cells) called shape functions, to represent an approximation

uh, called the trial function, of the exact solution of the weak form on a mesh Ωh:

uh =

NV∑
j=1

cjφj (4.15)

4.2.4 STEP 4: Determine Galerkin Weak Form

Equipped with these finite-dimensional spaces, we can rewrite the pre-element

weak form as the post-element weak form:

Find uh ∈ Vh,0 such that

∫
Ω

∇uh · ∇uh dx =

∫
Ω

fuh dx ∀uh ∈ Vh,0 (4.16)

Replacing uh with its basis expansion and choosing the basis functions for the test

functions, we arrive at the Galerkin weak form [44, 52, 74]:

Find c1, · · · , cNV
such that∫

Ω

∇φi · ∇

(
NV∑
j=1

cjφj

)
dx =

∫
Ω

fφi dx, for i = 1, · · · , NV

(4.17)

4.2.5 STEP 5: Assemble Finite Element Algebraic System

Harnessing the linearity of finite summation, gradients, dot products, and inte-

grals, we can rewrite the Galerkin weak form into a more convenient form:

Find coefficients c1, · · · , cNV
such that

NV∑
j=1

cj

(∫
Ω

∇φi · ∇φj dx

)
=

∫
Ω

fφi dx, for i = 1, · · · , NV

(4.18)
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Let the stiffness matrix be Mij :=

∫
Ω

∇φi · ∇φj dx,

Let the load vector be fi :=

∫
Ω

fφi dx.

Then the discretzied Galerkin weak form [44, 52, 74] is an algebraic system of

equations:

Find c1, · · · , cNV
such that

NV∑
j=1

Mijcj = fi, for i = 1, · · · , NV (4.19)

which expressed in matrix-form vector is the NV ×NV linear system:

Find coefficient vector c such that Mc = f (4.20)

For a nonlinear PDE, the discretized weak form becomes a nonlinear system.

4.2.6 STEP 6: Solve Finite Element Algebraic System

Since the test functions were chosen to be precisely the shape functions, the stiff-

ness matrix M is symmetric positive definite. Furthermore, the locality of the shape

functions implies that M is also a sparse matrix. Therefore, the finite element

linear system can be efficiently solved via the Conjugate Gradient iterative solver

[52, 64, 104, 122] with incomplete Cholesky [52, 104] or multigrid [17, 52, 104] pre-

conditioning.

In general, however, we cannot expect M to be symmetic positive definite. In

such cases, we would solve the linear system using GMRES [64, 104, 122] with an

appropriate preconditioner [80, 104].

For a nonlinear system, we employ a Newton solver [52, 64, 65, 121, 122].
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4.3 Nodal Finite Elements

4.3.1 Lagrange Elements

Lagrange elements [44, 74] mandate well-defined first derivatives:

Table 4.1: (Scalar) Lagrange Elements

(Scalar) Lagrange Elements of degree k

Approximates Functions in H1(Ω) := {u ∈ L2(Ω) : ∇u ∈ [L2(Ω)]d}

H1(Ω) norm ||u||2H1(Ω) := ||u||2L2(Ω) + ||∇u||2[L2(Ω)]d

Subspace of H1(Ω) H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω}

Inter-Element Property C0-continuity

L2 Convergence Rate O(hk+1)

Figure 4.3: First-Degree (Scalar) Lagrange Shape Functions

4.3.2 Vector Lagrange Elements

Vector Lagrange elements [80] are component-wise Lagrange elements:

Table 4.2: Vector Lagrange Elements

Vector Lagrange Elements of degree k

Approximates Functions in [H1(Ω)]d := {M ∈ [L2(Ω)]d : ∇M ∈ [L2(Ω)]d×d}

[H1(Ω)]
d
norm ||M||2

[H1(Ω)]d
:= ||M||2

[L2(Ω)]d
+ ||∇M||2

[L2(Ω)]d×d

Subspace of [H1(Ω)]d [H1
0 (Ω)]

d := {M ∈ [H1(Ω)]d : M = 0⃗ on ∂Ω}

Inter-Element Property Component-wise C0-continuity

L2 Convergence Rate O(hk+1)
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4.4 Edge Finite Elements

4.4.1 Nédélec (1st Kind) Elements

First kind Nédélec elements [13, 62, 80, 90] debuted in Jean-Claude Nédélec’s

seminal paper [94] in 1980. Note, however, that 1st-degree first kind Nédélec elements

[74, 103] were first discovered by Hassler Whitney [126] in 1957 and, hence, are

sometimes called Whitney elements.

Table 4.3: First Kind Nédélec Elements

Nédélec (1st Kind) Elements of degree k

Approximates Functions in H(curl; Ω) := {B ∈ [L2(Ω)]3 : ∇×B ∈ [L2(Ω)]3}

H(curl; Ω) norm ||B||2H(curl) := ||B||2[L2(Ω)]3 + ||∇ ×B||2[L2(Ω)]3

Subspace of H(curl) H0(curl; Ω) := {B ∈ H(curl; Ω) : n̂×B = 0⃗ on ∂Ω}

Subset of H(curl) HD(curl; Ω) := {B ∈ H(curl; Ω) : B = BD on ∂Ω}

Inter-Element Property Tangential continuity along edges

Mesh Property Weakly divergence-free

L2 Convergence Rate O(hk)

Here are the visual shape functions for 1st-degree first kind Nédélec [23]:

Figure 4.4: First-Degree First Kind Nédélec Shape Functions

Note that higher-order bases can be constructed either in an interpolary or hierar-

chical manner. Consult §8.6 & §8.7 of [62] for examples and references of interpolary

and hierarchical basis constructions, respectively.
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4.4.2 Nédélec (2nd Kind) Elements

Second kind Nédélec elements [80, 90] were unveiled in Jean-Claude Nédélec’s

second paper [95] in 1986. The 1st-degree second kind Nédélec elements were first

discovered by Gerrit Mur and Adrianus de Hoop [93] in 1985.

Table 4.4: Second Kind Nédélec Elements

Nédélec Elements (2nd Kind) of degree k

Approximates Functions in H(curl; Ω) := {B ∈ [L2(Ω)]3 : ∇×B ∈ [L2(Ω)]3}

H(curl; Ω) norm ||B||2H(curl) := ||B||2[L2(Ω)]3 + ||∇ ×B||2[L2(Ω)]3

Subspace of H(curl) H0(curl; Ω) := {B ∈ H(curl; Ω) : n̂×B = 0⃗ on ∂Ω}

Subset of H(curl) HD(curl; Ω) := {B ∈ H(curl; Ω) : B = BD on ∂Ω}

Inter-Element Property Tangential continuity along edges

Mesh Property Weakly divergence-free

L2 Convergence Rate O(hk+1)

Figure 4.5: First-Degree Second Kind Nédélec Shape Functions. Notice that the

first-degree first kind Nédélec shape functions are included.
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4.4.3 Weak Divergence-Free Property

All Nédélec elements are divergence-free in a weak sense [13, 69]:

Proposition 4.4.1. (Weak Divergence-Free Property)

Let Ω ⊂ Rd be a piecewise-smooth bounded domain with d ∈ {2, 3}.

Let vector field B(x) ∈ H(curl; Ω). Then:∫
Ω

B · ∇v dx = 0 ∀v(x) ∈ H1(Ω)

Replacing Ω with its mesh Ωh is called the Discrete Compactness Property.

1st-degree first kind Nédélec elements are not only weakly divergence-free but

strongly divergence-free in that the divergence of their shape functions are exactly

zero over the entire domain [13, 62, 74, 90, 94].

4.4.4 Immunity to Spurious Modes

Using Vector Lagrange elements for certain problems in electromagnetics will cause

undesirable spurious modes [62, 90, 103] to occur. Spurious modes are nonphysical

numerical solutions that are never found experimentally. What’s worse for our prob-

lem, imposing Vector Lagrange elements for B spawns spurious modes that have

large non-zero divergences which contradicts the mandate that B remain divergence-

free. Nédélec elements of either kind do not have this issue because they are weakly

divergence-free and tangentially continuous along cell edges [62, 90, 103].

4.5 Software Implementation Remarks

For simple problems with a simple coarse mesh and simple data such as a polyno-

mial for the RHS f and the boundary conditions, performing the corresponding Finite

Element Method by hand is feasible. However, in general the mesh will have a com-

plicated geometry and the PDE data will not be simple polynomials. In such cases,

programming the Finite Element Method in software will be absolutely necessary

[44, 74].
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4.5.1 A Brief Survey of Finite Element Frameworks

Writing a flexible FEM program from scratch is extremely daunting, but fortu-

nately there are several general-purpose industry-grade FEM frameworks available.

We absolutely require a framework that implements both kinds of edge elements of

arbitrary degree; likewise, the framework should implement or allow programming of

high-order IRK timesteppers.

Several of the open-source offerings lack comprehensive support for edge elements:

Sundance [81] completely lacks edge elements, GetFEM++ [100] has only 1st-degree

first kind Nédélec, Elmer [82] and FreeFem++ [53] support only up to 2nd-degree

first kind Nédélec, and deal.II [8] supports arbitrary-degree first kind Nédélec but not

second kind Nédélec. Other open source FEM frameworks exist but either they lack

edge elements, they are not general-purpose, or their latest version is at least five

years old.

On the other hand, commercial options have very intuitive graphical user in-

terfaces and implementations of several ERK timesteppers, but they tend to lack

high-order IRK timesteppers. ANSYS® [6] supports only Backward Euler and New-

mark; however, while Newmark is 2nd-order, it is tailored specifically for problems in

structural dynamics [96]. COMSOL® just has Backward Euler and implicit linear

multistep BDF2 through BDF5, but Braxton Bragg implemented GaussLegendre(1)

[15] – programming higher-order GaussLegendre(s) timesteppers in COMSOL® is

not obvious. MSC Nastran® [92] and MATLAB® [85] along with other proprietary

FEM solutions do not even support edge elements as they mainly focus on structural

mechanics, heat transfer and/or fluid dynamics.

This leaves us with the FEniCS [80] open source finite element framework. It sup-

ports arbitrary-degree Nédélec elements of both kinds. Furthermore, IRK timestep-

pers can be programmed in Python with minimal boilerplate code. Therefore, we

will use FEniCS for our simulation codes and validation tests. Details on FEniCS

usage will be deferred to Chapter 6.
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4.5.2 Reference Cells

In order to conserve computer memory, every cell in the mesh should be mapped

to a fixed reference cell via a linear transformation. This allows only a single group

of shape functions to be constructed. Once the coefficients of the shape functions

are determined, the inverse transformation is applied to glean the approximate FEM

solution for the original cell [44, 74].

4.5.3 Efficient Quadrature on Triangles & Tetrahedra

In general, integrals involving the RHS f will be non-elementary, meaning the

antiderivative cannot be represented in a finite closed-form. Therefore, an appropri-

ate quadrature rule [44, 74] must be applied, the most efficient of which are Gauss

quadrature rules. However, tensor-product Gauss quadrature schemes require more

quadrature points than is necessary. Instead, one should utilize efficient quadrature

schemes specifically designed for triangles and tetrahedra that use far fewer quadra-

ture points and, hence, require less memory and computation [62, 118, 129]. FEniCS

provides efficient quadrature schemes on triangles and tetrahedra up to 6th degree

[80].

4.5.4 Automatic Jacobian Matrix Computation

When solving a nonlinear system of algebraic equations via a Newton solver

[52, 64, 65, 121, 122], the Jacobian matrix must be provided each iteration. Per-

forming the computation by hand is undesirable as many problems lead to a Jacobian

matrix whose entries are long and tedious. Fortunately, FEniCS employs Automatic

Differentiation [4, 80] to compute the Jacobian matrix for each Newton iteration.

Sundance has a similar capability [81].
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CHAPTER V

THE COUPLED MICROMAGNETICS PROBLEM

5.1 Weak Form

5.1.1 Integration-by-Parts for Micromagnetics

We wish to generalize integration-by-parts for the micromagnetics problem’s weak

form by utilizing tensor notation (Table H.2) and Green’s identities (see Appendix):

Proposition 5.1.1. (Micromagnetic Integration-by-Parts – MIBP)

Let Ω ⊂ Rd be a bounded domain with d ∈ {2, 3} and outward unit normal n.

Let vector field A(x) ∈ [C(Ω)]d ∩ [C2(Ω)]d.

Let vector field B(x) ∈ [C(Ω)]d ∩ [C1(Ω)]d. Then:

(MIBP1)

∫
Ω

B · (A×∇2
A) dx =

∮
∂Ω

B ·
(
A× ∂A

∂n

)
dS

−
∫
Ω

∇(B×A) : ∇A dx

(MIBP2)

∫
Ω

B ·
[
A× (A×∇2

A)
]
dx =

∮
∂Ω

(B×A) ·
(
A× ∂A

∂n

)
dS

−
∫
Ω

∇ [(B×A)×A] : ∇A dx

Proof. Let A(x) = (A1, A2, A3) and B(x) = (B1, B2, B3). Then:

(MIBP1)∫
Ω

B · (A×∇2
A) dx

TN3
=

∫
Ω

ϵijkBiAj∇2Ak dx

GI1
=

∮
∂Ω

ϵijkBiAj
∂Ak

∂n
dS −

∫
Ω

∇(ϵijkBiAj) · ∇Ak dx

TN3
=

∮
∂Ω

B ·
(
A× ∂A

∂n

)
dS −

∫
Ω

∇(B×A)k · ∇(A)k dx

TN4
=

∮
∂Ω

B ·
(
A× ∂A

∂n

)
dS −

∫
Ω

∇(B×A) : ∇A dx

(5.1)
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(MIBP2)∫
Ω

B ·
[
A× (A×∇2

A)
]
dx

V A7
=

∫
Ω

B ·
[
(A · ∇2

A)A− (A ·A)∇2
A
]
dx

V A1
=

∫
Ω

(B ·A)(A · ∇2
A)− (A ·A)(B · ∇2

A) dx

V A8
=

∫
Ω

(B×A) · (A×∇2
A) dx

TN1
=

∫
Ω

(B×A)i(A×∇
2
A)i dx

TN2
=

∫
Ω

ϵjkiBjAkϵmniAm∇2An dx

GI1
=

∫
∂Ω

ϵjkiBjAkϵmniAm
∂An

∂n
dS −

∫
Ω

∇(ϵmniϵjkiBjAkAm) · ∇An dx

TN2
=

∫
∂Ω

(B×A)i

(
A× ∂A

∂n

)
i

dS −
∫
Ω

∇ [ϵmni(B×A)iAm] · ∇An dx

TNϵ
=

∫
∂Ω

(B×A) ·
(
A× ∂A

∂n

)
dS −

∫
Ω

∇ [ϵimn(B×A)iAm] · ∇An dx

TN2
=

∫
∂Ω

(B×A) ·
(
A× ∂A

∂n

)
dS −

∫
Ω

∇ [(B×A)×A]n · ∇(A)n dx

TN4
=

∫
∂Ω

(B×A) ·
(
A× ∂A

∂n

)
dS −

∫
Ω

∇ [(B×A)×A] : ∇A dx

(5.2)

5.1.2 Pre-Element-Pre-Timestepper Weak Form

Upon dot-producting both sides of the Eddy Currents PDE by test field B, dot-

producting both sides of the LLG PDE by test field M, add the two resulting equa-

tions together and then applying vector algebra/calculus identities, Green’s iden-

tities (see Appendix) and micromagnetic integration-by-parts, we arrive at the so-

called pre-element-pre-timestepper weak form of the micromagnetic problem which is
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N(B,M;B,M) = 0, where:

N(B,M;B,M) := −
∫
Ω
B ·Bt dx+ c1

∫
Ω
B · F dx

−c2
∫
Ω
(∇×B) · (∇×B) dx

+c1
∫
Ω
(∇×B) · (∇×M) dx

−
∫
Ω
M ·Mt dx+ c5

∫
Ω
M ·Q dx

−c6
∫
Ω
∇
[
M×M

]
: k4∇M dx

−c7
∫
Ω
∇
[
(M×M)×M

]
: k4∇M dx

+c6
∫
Ω
M · [M× k3(M · â)â] dx

+c7
∫
Ω
M · [M× (M× k3(M · â)â)] dx

+c6
∫
Ω
M · [M× k2B] dx

+c7
∫
Ω
M · [M× (M× k2B)] dx

(5.3)

Here, constants and parameters are lumped into symbols cj’s and kj’s for read-

ability, better fit to the page, and far easier programmability:

c1 =
1

σ
, c2 =

1

µσ
, c5 =

1

(1 + α2)Ms

, c6 =
γ0

1 + α2
, c7 =

γ0α

(1 + α2)Ms

(5.4)

k2 =
1

µ
, k3 =

2kanis
Ms

, k4 =
kexch
M2

s

(5.5)

5.2 Discretization in Space

5.2.1 Appropriate Hilbert Spaces

Since the weak form contains integrals involving∇×B, ∇×B, ∇M, ∇M and con-

tains no boundary integrals, the following Hilbert spaces [13, 74, 90] are paramount:

Proposition 5.2.1. (Hilbert Spaces & Subsets for Coupled Micromagnetics Problem)

Let Ω ⊂ Rd be a bounded domain with d ∈ {2, 3} and outward unit normal n.

Then, in order for the weak form of the coupled micromagnetics problem to be

well-defined and devoid of non-zero boundary integrals, we require:

� Solution B ∈ H∗(curl; Ω) := {H ∈ H(curl; Ω) : H = BD on ∂Ω}

� Test field B ∈ H0(curl; Ω) := {H ∈ H(curl; Ω) : n×H = 0⃗ on ∂Ω}
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� Solution M ∈ [H1(Ω)]d := {H ∈ [L2(Ω)]
d
: ∇H ∈ [L2(Ω)]

d×d}, where d ∈ {2, 3}

� Test field M ∈ [H1
0 (Ω)]

d := {H ∈ [H1(Ω)]d : H = 0⃗ on ∂Ω}

Recall the Hilbert space [78, 105] L2(Ω) := {u : Ω→ R |
∫
Ω
u2 dx <∞}.

When handling terms involving both B & M, the following fact helps:

Lemma 5.2.1. (A Tensor Gradient-conforming Vector Field is also Curl-conforming)

[H1(Ω)]
3 ⊂ H(curl; Ω).

Proof. || · || is the 2-norm on R3. Also, some inequalities from the Appendix are

used.

Let F(x) = (M,N,P ) ∈ [H1(Ω)]
3
, then:

M(x) ∈ H1(Ω) =⇒
∫
Ω
||∇M ||2 dx <∞

N(x) ∈ H1(Ω) =⇒
∫
Ω
||∇N ||2 dx <∞

P (x) ∈ H1(Ω) =⇒
∫
Ω
||∇P ||2 dx <∞

(5.6)

=⇒


∫
Ω
(Mx)

2 dx <∞,
∫
Ω
(My)

2 dx <∞,
∫
Ω
(Mz)

2 dx <∞∫
Ω
(Nx)

2 dx <∞,
∫
Ω
(Ny)

2 dx <∞,
∫
Ω
(Nz)

2 dx <∞∫
Ω
(Px)

2 dx <∞,
∫
Ω
(Py)

2 dx <∞,
∫
Ω
(Pz)

2 dx <∞

(5.7)

Now, ∇× F = (Py −Nz,Mz − Px, Nx −My).

∴
∫
Ω
|Py −Nz|2 dx =

∫
Ω
|P 2

y − 2PyNz +N2
z | dx

TI

≤
∫
Ω
|P 2

y |+ 2|PyNz|+ |N2
z | dx

=
∫
Ω
P 2
y dx+ 2

∫
Ω
|PyNz| dx+

∫
Ω
N2

z dx
CS

≤
∫
Ω
P 2
y dx+ 2

(∫
Ω
P 2
y dx

)1/2 (∫
Ω
P 2
y dx

)1/2
+
∫
Ω
N2

z dx

< ∞

(5.8)

Similarly,
∫
Ω
|Mz − Px|2 dx <∞ and

∫
Ω
|Nx −My|2 dx <∞.

∴
∫
Ω
||∇ × F||2 dx <∞ =⇒ ∇× F ∈ [L2(Ω)]

3
=⇒ F ∈ H(curl; Ω)
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5.2.2 Pre-Element-Pre-Timestepper Weak Problem

With the necessary Hilbert Spaces and their relevant subspaces and subsets all

identified, we can now state the pre-element-pre-timestepper weak problem:

Find (B(t; ·),M(t; ·)) ∈ H∗(curl; Ω)×H1(Ω)

such that N(B(t; ·),M(t; ·);B,M) = 0

∀ (B,M) ∈ H0(curl; Ω)×H1
0 (Ω) ∀t > 0.

(5.9)

5.2.3 Appropriate Mixed Finite Element

In terms of finite elements, the coupled micromagnetics problem requires a mixed

element where Bh uses Nedelec(1st kind) or Nedelec(2nd kind) elements and Mh

uses Vector Lagrange elements. This choice follows from the required Hilbert spaces

stated in Proposition 5.2.1.

5.2.4 Post-Element-Pre-Timestepper Weak Problem

Armed with the appropriate mixed finite element, here is the post-element-pre-

timestepper weak problem:

Find (Bh(t; ·),Mh(t; ·)) ∈ H∗(curl; Ωh)×H1(Ωh)

such that N(Bh(t; ·),Mh(t; ·);B,M) = 0

∀ (B,M) ∈ H0(curl; Ωh)×H1
0 (Ωh) ∀t > 0.

(5.10)

5.3 Discretization in Time

5.3.1 Partitioned Implicit Runge-Kutta (PIRK) Timesteppers

Sometimes, using the same timestepper for each solution variable of a time-

dependent system is not good enough as each variable may require a timestepper

with different stability and/or invariance properties. This is precisely the conundrum

we face with the coupled micromagnetics problem. A fix to this predicament is to

employ a partitioned Runge-Kutta timestepper [50] (first described in [55]):
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Definition 5.3.1. (Partitioned Runge-Kutta Timesteppers)

Given the following ODE system:

(PRK − IV P ) :



Bt(t) = F(t;B,M)

Mt(t) = Q(t;B,M)

B(t0) = B0

M(t0) = M0

Then the corresponding s-stage partitioned Runge-Kutta timestepper is:

α
[B]
1 β

[B]
11 β

[B]
12 · · · β

[B]
1s α

[M]
1 β

[M]
11 β

[M]
12 · · · β

[M]
1s

α
[B]
2 β

[B]
21 β

[B]
22 · · · β

[B]
2s α

[M]
2 β

[M]
21 β

[M]
22 · · · β

[M]
2s

...
...

...
. . .

...
...

...
...

. . .
...

α
[B]
s β

[B]
s1 β

[B]
s2 · · · β

[B]
ss α

[M]
s β

[M]
s1 β

[M]
s2 · · · β

[M]
ss

γ
[B]
1 γ

[B]
2 · · · γ

[B]
s γ

[M]
1 γ

[M]
2 · · · γ

[M]
s

where the left & right Butcher tables correspond to IRK timesteppers exclusively

used to time-discretize Bt & Mt respectively.

� If both timesteppers are explicit, then the entire timestepper is called a parti-

tioned explicit Runge-Kutta (PERK) timestepper.

� If both timesteppers are implicit, then the entire timestepper is called a parti-

tioned implicit Runge-Kutta (PIRK) timestepper.

Proposition 5.3.1. (Order of partitioned Runge-Kutta timestepper)

Let the two timesteppers comprising a partitioned Runge-Kutta timestepper have

orders p & q respectively. Then, the effective order of the entire partitioned Runge-

Kutta timestepper is min{p, q}.

Proof. (From [50]) Apply the timestepper to the following decoupled ODE system:

(PRK − IV P ) :



Bt(t) = F(t;B)

Mt(t) = Q(t;M)

B(t0) = B0

M(t0) = M0

(5.11)
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5.3.2 Appropriate PIRK Timestepper

For the coupled micromagnetics problem, it’s essential that such a partitioned

Runge-Kutta timestepper be implicit. The timestepper for B ideally should be L-

stable. The timestepper forM should be QIP due to the quadratic invariant involving

M. Only IRK timesteppers can possibly be either L-stable or QIP at high order.

Ideally, the αj’s for each chosen timestepper should be identical. Fortunately, we can

achieve all this by using certain Lobatto family timesteppers:

Proposition 5.3.2. (Appropriate PIRK Timestepper for coupled problem)

For the coupled problem, construct an s-stage PIRK timestepper such that:

� The timestepper for B is LobattoIIIC(s).

� The timestepper for M is LobattoIIIS(s).

The resulting PIRK timestepper will be called LobattoIII[C|S](s).

From Table 3.1 & Proposition 5.3.1, LobattoIII[C|S](s) has order (2s− 2).

Table 5.1: Chosen PIRK Timesteppers

TIMESTEPPER:
BUTCHER

TABLE:

Lobatto III[C|S](2)

0 1
2
−1

2
0 1

4
0

1 1
2

1
2

1 1
2

1
4

1
2

1
2

1
2

1
2

Lobatto III[C|S](3)

0 1
6
−1

3
1
6

0 1
12
− 1

12
0

1
2

1
6

5
12
− 1

12
1
2

3
16

1
3
− 1

48

1 1
6

2
3

1
6

1 1
6

3
4

1
12

1
6

2
3

1
6

1
6

2
3

1
6
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Similar Radau PIRK timesteppers can be constructed (e.g. Radau I[A|B](s) &

Radau II[A|B](s)) but are omitted here as the Lobatto ones were found first.

5.3.3 Post-Element-Post-Timestepper Weak Form

Finally, armed with the appropriate mixed finite element and s-stage PIRK timestep-

per, we arrive at the final weak form
∑s

j=1Nj = 0, where:

Nj = −
∫
Ωh

K
[j]

B ·K
[j]
B,h dx+ c1

∫
Ωh

K
[j]

B · F
(k+αj)
h dx

−c2
∫
Ωh
(∇×K

[j]

B ) · (∇×B
(ωj)
h ) dx

+c1
∫
Ωh
(∇×K

[j]

B ) · (∇×M
(ωj)
h ) dx

−
∫
Ωh

K
[j]

M ·K
[j]
M,h dx+ c5

∫
Ωh

K
[j]

M ·Q
(k+αj)
h dx

−c6
∫
Ωh
∇
[
K

[j]

M ×M
(ωj)
h

]
: k4∇M

(ωj)
h dx

−c7
∫
Ωh
∇
[(

K
[j]

M ×M
(ωj)
h

)
×M

(ωj)
h

]
: k4∇M

(ωj)
h dx

+c6
∫
Ωh

K
[j]

M ·
[
M

(ωj)
h × k3(M

(ωj)
h · â)â

]
dx

+c7
∫
Ωh

K
[j]

M ·
[
M

(ωj)
h ×

(
M

(ωj)
h × k3(M

(ωj)
h · â)â

)]
dx

+c6
∫
Ωh

K
[j]

M ·
[
M

(ωj)
h × k2B

(ωj)
h

]
dx

+c7
∫
Ωh

K
[j]

M ·
[
M

(ωj)
h ×

(
M

(ωj)
h × k2B

(ωj)
h

)]
dx

(5.12)

Recall the symbols cj’s and kj’s were defined in subsection 5.1.2. Moreover, some

special notation is employed for readability and ease-of-writing:

Definition 5.3.2. (Timestep Notation for Fh & Qh)

Suppose an s-stage PIRK timestepper is used for the micromagnetics problem.

Then, the final weak form will contain the following quantities:

F
(k+αj)
h := Fh(tk + αj(∆t);x)

Q
(k+αj)
h := Qh(tk + αj(∆t);x)

where tk is the current timestep, ∆t is the timestep size, the αj’s come from the

timestepper’s Butcher table, and index j ∈ {1, 2, · · · , s}.
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Definition 5.3.3. (Warp Notation for Bh & Mh)

Suppose an s-stage PIRK timestepper is used for the micromagnetics problem.

Then, the final weak form will contain the following quantities:

B
(k+ωj)
h := B

(k)
h + (∆t)

(
β
[B]
j,1 K

[1]
B + · · ·+ β

[B]
j,s K

[s]
B

)
M

(k+ωj)
h := M

(k)
h + (∆t)

(
β
[M]
j,1 K

[1]
M + · · ·+ β

[M]
j,s K

[s]
M

)
where β

[B]
j,k & β

[M]
j,k are the (j, k)-entries of the PIRK Butcher table matrices for B

& M respectively, ∆t is the timestep size, and the index j ∈ {1, 2, · · · , s}.

5.3.4 Post-Element-Post-Timestepper Weak Problem

With the final weak form, we can now state the full weak formulation of the

micromagnetics problem when using an s-stage PIRK timestepper:

Find (K
[1]
B,h(t; ·),K

[1]
M,h(t; ·), · · · ,K

[s]
B,h(t; ·),K

[s]
M,h(t; ·)) ∈

s∏
j=1

[
H∗(curl; Ωh)×H1(Ωh)

]
such that

s∑
j=1

Nj = 0

∀ (K
[1]

B ,K
[1]

M, · · · ,K[s]

B ,K
[s]

M) ∈
s∏

j=1

[
H0(curl; Ωh)×H1

0 (Ωh)
]
∀t > 0.

(5.13)

5.3.5 Treatment of Inhomogeneous Dirichlet BC’s

In contrast to other methods such as Dirichlet Splitting, the inhomogeneous

Dirichlet boundary conditions on B are handled by the timestepper by first taking

the time-derivative on both sides and then applying the s-stage timestepper:

B = BD on ∂Ω

∂/∂t
=⇒ Bt =

∂BD

∂t
on ∂Ω

PIRK
=⇒ K

[j]
B =

∂

∂t

[
B

(k+αj)
D

]
on ∂Ω for j ∈ {1, 2, · · · , s}

(5.14)
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CHAPTER VI

VALIDATION TESTS

The core algorithm is shown below independent of programming language:

6.1 Simulation Pseudocode

Data: Mesh Ωh; timestep size ∆t; final timestep T

Data: Physical constants Ms, γ0, α, σ, µ0, kanis, kexch, â

Data: Dirichlet boundary condition (BC) BD(t;x)

Data: Initial conditions (IC’s) B0(x) & M0(x)

Data: s-stage [L-stable,QIP]-PIRK timestepper

Initialize computed soln’s with their IC’s:
(
B

(0)
h ,M

(0)
h

)
←
(
B0,M0

)
;

Initialize timestep counter k ← 0;

Initialize timestep t← 0;

while t < T do

for j ∈ {1, 2, · · · , s} do

Set Dirichlet BC for jth stage K
[j]
B,h to

∂

∂t

[
B

(k+αj)
D

]
;

end

Solve weak form
∑s

j=1Nj = 0 for
(
K

[1]
B,h,K

[1]
M,h, · · · ,K

[s]
B,h,K

[s]
M,h

)
;

B
(k+1)
h ← B

(k)
h + (∆t)[γ

[B]
1 K

[1]
B,h + · · ·+ γ

[B]
s K

[s]
B,h];

M
(k+1)
h ←M

(k)
h + (∆t)[γ

[M]
1 K

[1]
M,h + · · ·+ γ

[M]
s K

[s]
M,h];

(Compute any post-processing functionals);

(Write out visualization profiles to file);

k ← k + 1;

t← t+∆t;

end

Result: Computed solutions Bh(t) & Mh(t) for t ∈ {0,∆t, 2∆t, · · · , T}

Algorithm 1: Pseudocode for LLG+EC simulation
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6.2 Remarks on Software Implementation

6.2.1 FEniCS

The simulation code is written in Python and uses the FEniCS library [80] for all

finite element functionality:

� Basic mesh generation

� Axis-aligned triangulation/tetrahedralization of mesh

� Assortment of common finite elements & function spaces

� Efficient quadrature schemes on triangles & tetrahedra

� Assembly of weak forms into (non)linear systems

� Access to (non)linear solvers provided by system’s linear algebra backend

(e.g. PETSc [7], Eigen, Trilinos, ...)

� Computation of post-processing functionals

� Exportation of computations to file for visualization tools (e.g. ParaView)

6.2.2 NumPy

The NumPy [98] library provides the core scientific computation capabilities that

FEniCS utilizes. Occasionally, it is necessary to directly call NumPy functions to

compute:

� Averages: numpy.mean()

� Maximums: numpy.max()

� Norms of vectors: numpy.linalg.norm()
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6.2.3 SymPy

In order to automatically treat boundary conditions as well as painlessly perform

validation tests and sanity checks, we use SymPy [87] to perform symbolic computa-

tion. Moreover, the sympy.vector module is used to compute divergences and curls

of vector fields.

6.2.4 Automatic Handling of Boundary Conditions

Symbolic manipulation via SymPy is necessary to impose the appropriate Dirichlet

boundary conditions for each timestepper stage without doing so manually:

∂

∂t

[
B

(k+αj)
D

]
⇐⇒ sympy.diff(BD.subs([(t,t+(alpha j*dt))]),t) (6.1)

6.3 Validation Tests

Just because the code executes error-free does not guarantee that the program is

actually working. To assure that there are no logic errors, it is vital to perform vali-

dation tests on the code. Since our problem involves PDE’s, we will use a particular

kind of validation called the Method of Manufactured Solutions [73, 97, 102, 107]:

1. Pick a domain Ω ⊂ Rd (d ∈ {2, 3}) with a piecewise smooth boundary ∂Ω.

2. Replace the RHS zero vectors of the micromagnetics problem’s two PDE’s with

arbitrary vector fields F(t;x) and Q(t;x):

Bt − 1
µσ
∇2

B− 1
σ
∇×∇×M = F in Ω× [0, T ]

∇ ·B = 0 in Ω× [0, T ]

1
µ
B−M+ 2kanis

Ms
(M · â)â+ kexch

M2
s
∇2

M = Heff in Ω× [0, T ]

Mt − γ0
1+α2 (M×Heff )− γ0α

(1+α2)Ms
M× (M×Heff ) = Q in Ω× [0, T ]

B = BD on ∂Ω× [0, T ]

∂M/∂n = 0⃗ on ∂Ω× [0, T ]

B = B0 at Ω× {t = 0}

M = M0 at Ω× {t = 0}

(6.2)
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3. Manufacture an exact solution for B in [HD(curl; Ω)]
d, denoted Bex, such that

it is uniformly divergence-free in space and time.

4. Manufacture an exact solution for M in [H1(Ω)]d, denoted Mex, such that

it satisfies the homogeneous Neumann BC on ∂Ω as well as being uniformly

constant-norm in space and time.

5. Set saturation constant Ms = ||M||.

6. Choose values for the physical constants µ, σ, kanis, kexch, γ0, α, â.

7. Plug these manufactured solutions into the two PDE’s in order to determine

the RHS’s F and Q.

8. Evaluate Bex on the boundary ∂Ω, resulting in the BC BD.

9. Evaluate Bex and Mex at time t = 0, resulting in the IC’s B0 and M0.

10. Using all the problem data (i.e. F,Q,BD,B0,M0,Ms, µ, σ, kanis, kexch, γ0, α, â),

run the simulation code to determine the computed solutions Bh and Mh.

11. Compute the solution errors ||Bh −Bex||[L2(Ω)]d and ||Mh −Mex||[L2(Ω)]d .

12. Repeat the simulation run with either a smaller (refined) cell diameter h or

timestep size ∆t.

� Refining h each run is called a CAMR validation test.

– CAMR is short for “Convergence Analysis of Mesh Refinements.”

� Refining ∆t each run is called a CATS validation test.

– CATS is short for “Convergence Analysis of Timestep Sizes.”

13. Post-process the results: plot, check convergence rates, etc...
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6.3.1 Manufactured Solutions for the Unit Square Ω := [0, 1]2

It is key to run validation tests with manufactured solutions that may not be fully

space- and time-dependent to ensure that the simulation code is robust. Here is a

set of manufactured solutions for CAMR validation tests:

Table 6.1: CAMR Manufactured Solutions for the Unit Square

Solution Pairs:

(
Mex(·) :=

[
cos θ(·)
− sin θ(·)

]
, p(x, y) := xy(1− x)(1− y)

)
Bex(t) :=

[
sin(t)

− cos(t)

]
θ(t) := t

Bex(t) :=

[
t/100
−t/100

]
θ(x) := 10 cos(

√
3 · p(x, y))

Bex(t) :=

[
t/100
−t/100

]
θ(t;x) := (t/100)

+ 10 cos(
√
3 · p(x, y))

Bex(x) :=

[
10 sin(10

√
7 · y)

10 cos(10
√
5 · x)

]
θ(t) := t/100

Bex(x) :=

[
10 sin(10

√
7 · y)

10 cos(10
√
5 · x)

]
θ(x) := 10 cos(

√
3 · p(x, y))

Bex(x) :=

[
10 sin(10

√
7 · y)

10 cos(10
√
5 · x)

]
θ(t;x) := (t/100)

+ 10 cos(
√
3 · p(x, y))

Bex(t;x) :=

[
(t/100) + 10 sin(10

√
7 · y)

−(t/100) + 10 cos(10
√
5 · x)

]
θ(t) := t/100

Bex(t;x) :=

[
(t/100) + 10 sin(10

√
7 · y)

−(t/100) + 10 cos(10
√
5 · x)

]
θ(x) := 10 cos(

√
3 · p(x, y))

Bex(t;x) :=

[
(t/100) + 10 sin(10

√
7 · y)

−(t/100) + 10 cos(10
√
5 · x)

]
θ(t;x) := (t/100)

+ 10 cos(
√
3 · p(x, y))
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Below is a corresponding set of manufactured solutions for CATS validation tests:

Table 6.2: CATS Manufactured Solutions for the Unit Square

Solution Pairs:

(
Mex(·) :=

[
cos θ(·)
− sin θ(·)

]
, p(x, y) := xy(1− x)(1− y)

)
Bex(t) :=

[
10 sin(10

√
7 · t)

10 cos(10
√
5 · t)

]
θ(t) := t

Bex(t) :=

[
10 sin(10

√
7 · t)

10 cos(10
√
5 · t)

]
θ(x) := [p(x, y)]4

Bex(t) :=

[
10 sin(10

√
7 · t)

10 cos(10
√
5 · t)

]
θ(t;x) := sin(

√
3 · t) + [p(x, y)]12

Bex(x) :=
[

y
−x

]
θ(t) := t

Bex(x) :=
[

y
−x

]
θ(x) := [p(x, y)]4

Bex(x) :=
[

y
−x

]
θ(t;x) := sin(

√
3 · t) + [p(x, y)]12

Bex(t;x) :=

[
y + 10 sin(10

√
7 · t)

−x+ 10 cos(10
√
5 · t)

]
θ(t) := t

Bex(t;x) :=

[
y + 10 sin(10

√
7 · t)

−x+ 10 cos(10
√
5 · t)

]
θ(x) := [p(x, y)]4

Bex(t;x) :=

[
y + 10 sin(10

√
7 · t)

−x+ 10 cos(10
√
5 · t)

]
θ(t;x) := sin(

√
3 · t) + [p(x, y)]12
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6.3.2 The Importance of Sufficient Refinement

In general, when running validation tests, using too coarse of a fixed timestep size

∆t may cause the resulting CAMR lineplot to “bottom out” as shown here with the

blue and orange lineplots:

Figure 6.1: “Bottoming Out” of CAMR Line Plots (blue & orange lines)

What caused this is the fact that the solution error due to the fixed timestep size

(∆t = 0.1) is at least an order of magnitude larger than the error due to the current

cell diameter. Fortunately, this issue vanishes upon refinement (∆t = 0.01.)

A coarse fixed cell diameter h may result in “bottoming out” for CATS plots:

Figure 6.2: “Bottoming Out” of CATS Line Plots (blue & orange lines)

What caused this is the fact that the solution error due to the fixed cell diameter

(h ≈ 0.3536) is at least an order of magnitude larger than the error due to the current
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timestep size. The cure is to use a finer mesh (e.g. h ≈ 0.1768.)

The example validation plots in the next three subsections use sufficiently refined

timestep sizes and cell diameters to prevent such undesirable behavior.

6.3.3 Example Validation Plots with Bex(t) & Mex(t)

Since the exact solutions solely depend on time and not on space, refining the cell

diameter h neither improves nor worsens the error in the computed solutions. Hence,

their CAMR lineplots are flat, even with the coarsest timestep size of ∆t = 0.5:

Figure 6.3: CAMR Plots of LLG+EC with Time-Dependent Exact Solutions
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On the otherhand, refining the timestep size ∆t should improve the solution errors

nearly at the expected convergence rate of the timestepper. Therefore, their CATS

lineplots should closely track the expected convergence lines (thick black lines):

Figure 6.4: CATS Plots of LLG+EC with Time-Dependent Exact Solutions
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6.3.4 Example Validation Plots with Bex(x) & Mex(x)

With solely space-dependent exact solutions, refining the cell diameter h should

improve the solution errors nearly at the expected convergence rate of the correspond-

ing finite element. Therefore, their CAMR lineplots should closely track the expected

convergence lines (thick black lines):

Figure 6.5: CAMR Plots of LLG+EC with Space-Dependent Exact Solutions
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The lack of time dependence implies that their CATS line plots should be flat,

even with the coarsest mesh bearing cell diameter h ≈ 0.7071:

Figure 6.6: CATS Plots of LLG+EC with Space-Dependent Exact Solutions
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6.3.5 Example Validation Plots with Bex(t;x) & Mex(t;x)

With exact solutions bearing full space and time dependence, the resulting CAMR

and CATS lineplots should track expected convergence rates for the corresponding

finite element and timestepper, respectively:

Figure 6.7: CAMR Plots of LLG+EC with Space-Time Exact Solutions
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Figure 6.8: CATS Plots of LLG+EC with Space-Time Exact Solutions

Notice that finer fixed cell diameters and fixed timestep sizes are necessary in

this case. In fact, the other six exact solution configurations should exhibit similar

tracking behavior and refinement requirements for both CAMR and CATS validation

plots. Because of this, further example plots are omitted to reduce clutter.
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6.4 Summary of all Validation Tests for Unit Square Ω := [0, 1]2

Table 6.3: Validation Tests on the Unit Square. Here, p := (2s − 2) is the order of

timestepper. The physical constants were chosen as follows: γ0 = −1, â =
[
1
0

]
,

µ = σ = kanis = kexch = α = 1.

Ω = [0, 1]2

t ∈ [0, T ]; T = 1

Bh ∈ Ned1st
k+1

Bh ∈ Ned2nd
k

Mh ∈ VLagk

LobIII[C|S](s)

Bex(t) Bex(x) Bex(t; x)

Mex(t)

Bh : O(h0)

Mh : O(h0)

Bh : O((∆t)p)

Mh : O((∆t)p)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)p)

Mh : O((∆t)p)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)p)

Mh : O((∆t)p)

Mex(x)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)p)

Mh : O((∆t)p)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)0)

Mh : O((∆t)0)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)p)

Mh : O((∆t)p)

Mex(t; x)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)p)

Mh : O((∆t)p)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)p)

Mh : O((∆t)p)

Bh : O(hk+1)

Mh : O(hk+1)

Bh : O((∆t)p)

Mh : O((∆t)p)
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CHAPTER VII

SIMULATION ERROR ESTIMATES

We are interested in constructing error estimates for the computed solution when

performing simulations: (the symbols cj’s & kj’s were defined in subsection 5.1.2)

Bt − c2∇
2
B− c1∇×∇×M = 0⃗ in Ω× [0, T ]

∇ ·B = 0 in Ω× [0, T ]

k2B−M+ k3(M · â)â+ k4∇
2
M = Heff in Ω× [0, T ]

Mt − c6(M×Heff )− c7M× (M×Heff ) = 0⃗ in Ω× [0, T ]

B = BD on ∂Ω× [0, T ]

∂M/∂n = 0⃗ on ∂Ω× [0, T ]

B = B0 at Ω× {t = 0}

M = M0 at Ω× {t = 0}

(7.1)

Error estimates are useful as they provide upper bounds on solution errors. This

informs how refined h and ∆t should be to achieve a sufficiently small error.

7.1 A Priori QIP Error Estimate

First, a lemma to aid in the proof of the a priori QIP error estimate:

Lemma 7.1.1. (Nested Norm Lemma)

Let A(x),B(x) ∈ [C(Ω)]d with piecewise-smooth bounded domain Ω. Then:

(NNL)

∫
Ω

|A ·B| dx ≤ ||A||[L2(Ω)]d · ||B||[L2(Ω)]d

Proof. Apply Cauchy-Schwarz Inequality (CSI) to the integrand via the 2-norm.

Then apply CSI to the integral via the L2 norm, resulting in nested norms:∫
Ω
|A ·B| dx

CSI

≤
∫
Ω
||A||2 · ||B||2 dx =

∣∣∫
Ω
||A||2 · ||B||2 dx

∣∣
CSI

≤ || ||A||2 ||L2(Ω) · || ||B||2 ||L2(Ω)
L2

=
(∫

Ω
A ·A dx

)1/2 · (∫
Ω
B ·B dx

)1/2
[L2]d

= ||A||[L2(Ω)]d · ||B||[L2(Ω)]d

(7.2)
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Proposition 7.1.1. (A Priori QIP Error Estimate)

Let problem (7.1) have mesh Ωh ∈ Rd and NT total timesteps & timestep size ∆t.

Let M be the exact solution to problem (7.1). Let Hilbert space V := [L2(Ωh)]
d
.

Let M
(k)
h be the computed solution using FEM and an s-stage PIRK timestepper.

Let τ > 0 be the absolute || · ||V Newton tolerance in applying PIRK on M
(k)
h

once.

Then an a priori error estimate for the error in the 2-norm of M
(NT )
h is:∣∣∣∣∫

Ωh

||M(NT )
h ||22 − ||M0||22 dx

∣∣∣∣ ≤ |Ωh|1/2 · [(2Ms +NT (∆t)τ)] · ||M(NT )
h −M||V

Proof. Errors in M
(1)
h ,M

(NT )
h due to timestepper are (∆t)τ , NT (∆t)τ respectively.

We apply appropriate Triangle Inequalities (TI), the Nested Norm Lemma (NNL)

and the QIP-ness of the exact solution M (||M||2 := Ms):∣∣∣∫Ωh
||M(NT )

h ||22 − ||M0||22 dx
∣∣∣

=
∣∣∣∫Ωh

M
(NT )
h ·M(NT )

h −M0 ·M0 dx
∣∣∣

QIP
=

∣∣∣∫Ωh
M

(NT )
h ·M(NT )

h −M ·M dx
∣∣∣

TI

≤
∫
Ωh

∣∣∣M(NT )
h ·M(NT )

h −M ·M
∣∣∣ dx

CIZ
=

∫
Ωh

∣∣∣M(NT )
h ·M(NT )

h +
(
M

(NT )
h ·M−M

(NT )
h ·M

)
−M ·M

∣∣∣ dx

=
∫
Ωh

∣∣∣M(NT )
h ·

[
M

(NT )
h −M

]
+
[
M

(NT )
h −M

]
·M
∣∣∣ dx

TI

≤
∫
Ωh

∣∣∣M(NT )
h ·

[
M

(NT )
h −M

]∣∣∣ dx+
∫
Ωh

∣∣∣[M(NT )
h −M

]
·M
∣∣∣ dx

NNL

≤ ||M(NT )
h ||V · ||M(NT )

h −M||V + ||M(NT )
h −M||V · ||M||V

QIP
=

[
||M(NT )

h ||V + |Ωh|1/2 ·Ms

]
· ||M(NT )

h −M||V

PIRK

≤
[
|Ωh|1/2 · [Ms +NT (∆t)τ ] + |Ωh|1/2 ·Ms

]
· ||M(NT )

h −M||V

= |Ωh|1/2 · [(2Ms +NT (∆t)τ)] · ||M(NT )
h −M||V

(7.3)

96



Texas Tech University, Josh Engwer, August 2018 (Last Revised September 2022)

97



Texas Tech University, Josh Engwer, August 2018 (Last Revised September 2022)

7.2 A Posteriori QIP Error Estimate

We need a special norm and inner product for the a posteriori QIP error estimate:

Lemma 7.2.1. (Discretized Vector Lagrange Inner Product & Norm)

Let Ω ⊂ Rd be a piecewise-smooth bounded domain with d ∈ {2, 3}.

Let Ωh ⊆ Ω be a mesh of domain Ω with a total of Nh nodes.

Let ϕ1, · · · , ϕNh
be the kth-degree Vector Lagrange shape functions on Ωh.

Let vector fields Ah,Bh,Ch ∈ [H1(Ωh)]
d.

Then, operations ⟨·, ·⟩DV L : [H1(Ωh)]
d×[H1(Ωh)]

d → R& ||·||DV L : [H1(Ωh)]
d → R

⟨Ah,Bh⟩DV L :=

Nh∑
i=1

Nh∑
j=1

Ah,i ·Bh,j

∫
Ωh

ϕiϕj dx

||Ah||DV L :=

(
Nh∑
i=1

Nh∑
j=1

Ah,i ·Ah,j

∫
Ωh

ϕiϕj dx

)1/2

are an inner product and corresponding norm on Ωh, respectively.

Proof. Since the mass matrix M defined by [mij]Nh×Nh
:=

∫
Ωh

ϕiϕj dx is symmetric

positive definite, the inner product & norm are non-negative, being zero only if one

of the arguments is the zero vector, and ⟨Bh,Ah⟩DV L = ⟨Ah,Bh⟩DV L.

Linearity implies that scalar multiples can be factored out of the inner product

and norm; in addition, ⟨Ah,Bh +Ch⟩DV L = ⟨Ah,Bh⟩DV L + ⟨Ah,Ch⟩DV L.

Apply Cauchy-Schwarz Inequality (CSI) to verify norm’s triangle inequality:

||Ah +Bh||2DV L :=
∑Nh

i=1

∑Nh

j=1(Ah,i +Bh,i) · (Ah,j +Bh,j)
∫
Ωh

ϕiϕj dx

= ||Ah||2DV L + 2⟨Ah,Bh⟩DV L + ||Bh||2DV L

≤ ||Ah||2DV L + 2|⟨Ah,Bh⟩DV L|+ ||Bh||2DV L

CSI

≤ ||Ah||2DV L + 2||Ah||DV L · ||Bh||DV L + ||Bh||2DV L

= (||Ah||DV L + ||Bh||DV L)
2

(7.4)

∴ ||Ah +Bh||DV L ≤ ||Ah||DV L + ||Bh||DV L

∴ Inner product ⟨·, ·⟩DV L and norm || · ||DV L are both well-defined.
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Proposition 7.2.1. (A Posteriori QIP Error Estimate)

Let problem (7.1) have mesh Ωh ∈ Rd and timestep size ∆t > 0.

Let M
(k)
h be the computed solution using FEM and an s-stage PIRK timestepper.

Let τ > 0 be the absolute || · ||Vh
Newton tolerance in applying PIRK on M

(k)
h

once.

Then an a posteriori error estimate for the QIP error at timestep t = tk+1 is:∣∣∣||M(k+1)
h ||2Vh

− ||M(k)
h ||2Vh

∣∣∣ ≤ 2(∆t)τ ||M(k)
h ||Vh

+ (∆t)2τ 2

where || · ||Vh
:= || · ||DV L is the discretized Vector Lagrange norm on Ωh.

Proof. First, define the Newton solver error in one step of the PIRK timestepper:

M
(k+1)
h = M

(k)
h + (∆t)S(k) + (∆t)E(k), where

 S(k) :=
∑s

j=1 γ
[M]
j K

[j]
M,h

||E(k)||Vh
≤ τ ∀k

(7.5)

Next, take squared Vh-norms on both sides:

||M(k+1)
h ||2Vh

= ||M(k)
h + (∆t)S(k) + (∆t)E(k)||2Vh

=
〈(

M
(k)
h + (∆t)S(k)

)
+ (∆t)E(k),

(
M

(k)
h + (∆t)S(k)

)
+ (∆t)E(k)

〉
Vh

= ||M(k)
h + (∆t)S(k)||2Vh

+ 2
〈
(∆t)E(k),M

(k)
h + (∆t)S(k)

〉
Vh

+ (∆t)2||E(k)||2Vh

QIP
= ||M(k)

h ||2Vh
+ 2(∆t)

〈
E(k),

(
M

(k)
h + (∆t)S(k)

)〉
Vh

+ (∆t)2||E(k)||2Vh

(7.6)

Subtracting both sides by ||M(k)
h ||2Vh

and taking absolute values results in:∣∣∣||M(k+1)
h ||2Vh

− ||M(k)
h ||2Vh

∣∣∣
=

∣∣∣2(∆t)
〈
E(k),

(
M

(k)
h + (∆t)S(k)

)〉
Vh

+ (∆t)2||E(k)||2Vh

∣∣∣
TI

≤
∣∣∣2(∆t)

〈
E(k),

(
M

(k)
h + (∆t)S(k)

)〉
Vh

∣∣∣+ ∣∣(∆t)2||E(k)||2Vh

∣∣
CSI

≤ 2(∆t)||E(k)||Vh

∣∣∣∣∣∣(M(k)
h + (∆t)S(k)

)∣∣∣∣∣∣
Vh

+ (∆t)2||E(k)||2Vh

QIP
= 2(∆t)||E(k)||Vh

||M(k)
h ||Vh

+ (∆t)2||E(k)||2Vh

≤ 2(∆t)τ ||M(k)
h ||Vh

+ (∆t)2τ 2

(7.7)
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CHAPTER VIII

CONCLUSION

In this dissertation, we have successfully constructed and tested a numerical al-

gorithm to solve the coupled LLG equation with eddy currents in 2D equipped with

inhomogeneous Dirichlet BC’s for the magnetic inductance field B and homogeneous

Neumann BC’s for the magnetization field M.

The first chapter began with overviews of micromagnetics and eddy currents from

physics with connections to everyday life. Next, a survey of previous work on the

Landau-Lifschitz-Gilbert (LLG) Equation coupled with the Eddy Currents Equation

follows; we observed that the employed numerical methods were either high-order

but specialized or general-purpose but low-order. The chapter concluded with a

derivation of the coupled problem.

Chapter 2 provides essential background on linear multistep and Runge-Kutta

timesteppers, both explicit and implicit. Several common Runge-Kutta timesteppers

are constructed via quadrature or collocation. Also, their order of accuracy is stated

and sometimes proven.

In Chapter 3, the notions of consistency and stability of timesteppers are discussed.

There are several types of stability that are illustrated with examples. Also, quadratic

invariant-preserving (QIP) timesteppers are introduced and visually demonstrated.

Finally, a table summarizing well-known timesteppers’ stability and QIP properties

(or lack thereof.) We end by making the case that we should only use implicit Runge-

Kutta (IRK) timesteppers as some of them bear sufficient stability properties or are

QIP.

Finite elements are discussed in Chapter 4 starting with an overview of the Finite

Element Method (FEM) as applied to Poisson’s Equation in 2D. We talk about

weak forms, function spaces, meshes, and assembled algebraic systems of equations.

Afterwards, a catalog of relevant finite elements are defined. We wrap up the chapter

with tips on implementing FEM in software and why we picked FEniCS as our finite
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element framework.

Chapter 5 is where we decided on appropriate finite elements and our constructed

partitioned implicit Runge-Kutta (PIRK) timestepper to apply to the coupled prob-

lem. We justified our choices based on the problem’s weak form, the fact that the

Eddy Currents Equation is stiff, and the fact that the LLG Equation has an inherent

quadratic invariant. We produced the problem’s final weak form with the timestepper

and finite elements in effect and then discussed how we handled the inhomogeneous

Dirichlet BC’s with respect to our PIRK timestepper.

Chapter 6 begins with discussion of the features of FEniCS. We then identified

SymPy our library for performing symbolic computations. SymPy is used in the

simulation code to automatically impose the inhomogeneous Dirichlet BC’s. Lastly,

we illustrated the Method of Manufactured Solutions and validation testing with an

example on the unit square domain.

Finally, two types of error estimates for the QIP error in the computed solution

are stated and proven in Chapter 7.

8.1 Future Work

In order for this work to be useful in simulation of real-world experiments of

micromagnetics with eddy currents, the code must become more efficient as well as

thoroughly tested on a 3D mesh.

8.1.1 Block Preconditioner

To solve the linearized algebraic system at each Newton iteration [52, 64, 65, 121,

122], we employed GMRES [64, 104, 122] with Incomplete LU preconditioning [104] as

this linear solver is very general and robust. Baňas [9] built a multigrid [17] precon-

ditioner for the 3D problem with homogeneous BC’s for the Eddy Currents equation,

linear finite elements and low-order timestepping scheme. However, the performance

of linear solves can be improved by constructing a block preconditioner [80, 104] tai-

lored specifically for our numerical schemes applied to the coupled LLG+EC PDE
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system. Doing so requires careful inspection of the structured block system arising

from the PIRK timestepper including the distribution of the eigenvalues.

Also helpful when constructing preconditioners are sparsity patterns of the Jaco-

bian matrix which visually indicate the distribution of non-zero entries:

Figure 8.1: Jacobian Matrix Sparsity Pattern on a Coarse Unit Square Mesh (h ≈

0.7071) using the 2-stage PIRK, 1st-degree elements (left) and 3-stage PIRK, 3rd-

degree elements (right). The number of zero entries is denoted by ’nz’.

Figure 8.2: Jacobian Matrix Sparsity Pattern on a Fine Unit Square Mesh (h ≈

0.0844) using the 2-stage PIRK, 1st-degree elements (left) and 3-stage PIRK, 3rd-

degree elements (right). Second kind Nédélec elements are used for B. The number

of zero entries is denoted by ’nz’.
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Finally, the matrix shape and percentage of non-zeros in the Jacobian matrix for

various mesh refinements is shown in the following table:

Table 8.1: Matrix Size (Percentage of Non-Zeros in Parentheses) in Jacobian Matrix

for various Refinements of Unit Square Mesh. The computer used to produce these

matrices has 32GB of RAM. For example, the top-left values of 100 (34.7%) indicate

that the Jacobian matrix is 100x100 and about 34.7% of its entries are non-zero. Red

entries estimate the required RAM necessary to produce the Jacobian matrix.

Cell Diameter h
Lobatto[C|S](2)

N2xVLag(1, 1)

Lobatto[C|S](3)

N2xVLag(3, 3)

0.7071 100 (34.7%) 678 (22.8%)

0.0884 4,356 (1.0%) 36,294 (0.49%)

0.0110 264,196 (0.02%) 2,268,678 (0.0079%)

0.0055 1,052,676 (0.004%) (> 32GB)

0.0028 4,202,500 (0.001%) (> 64GB?)

0.0014 16,793,604 (0.0003%) (> 128GB?)

8.1.2 Validation Tests in 3D on the Unit Cube

Our validation tests were performed exclusively in 2D on the unit square. Ideally,

we desire for the validation tests to successively run in 3D on the unit cube. However,

there are a few issues that currently impede this endeavor.

Early on in this research work, back in 2014, assembling a matrix using Nédélec

elements in FEniCS with the PETSc backend [7] would cause a memory leak that

would eventually exhaust all available computer memory. Fortunately, it was discov-

ered that the copy constructor for PETSc matrices was the root cause of the memory

leak and was fixed prior to the release of version 1.4 of FEniCS [29].

Unfortunately, another issue regarding matrix assembly with Nédélec elements

still persists. This occurs specifically with 3rd-degree Nédélec elements or higher
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with a 3D mesh. Attempts to assemble a stiffness or mass matrix causes FEniCS

to loop indefinitely [54]. Catastrophically, a workaround was proposed to use an

internal representation for weak forms called ’quadrature’, but it is deprecated in

FEniCS version 2017.2.

To demonstrate the deprecation, running the following FEniCS Python code:

from dolfin import *

parameters[’form compiler’][’representation’] = ’quadrature’

mesh = UnitCubeMesh(2,2,2)

V = FunctionSpace(mesh,’N1curl’, 3) # 3rd-degree 1st-kind Nedelec

u = TrialFunction(V)

v = TestFunction(V)

a = dot(curl(u),curl(v))*dx

l = dot(u,v)*dx

A = PETScMatrix()

L = PETScMatrix()

assemble(a, tensor=A)

assemble(l, tensor=L)

results in the following output:

*** ==============================================

*** FFC: quadrature representation is deprecated!

*** It will likely be removed in 2018.1.0 release.

*** Use uflacs representation instead.

*** ==============================================

Alas, replacing the second line with the suggestion to use ’uflacs’ instead:

parameters[’form compiler’][’representation’] = ’uflacs’

causes the aforementioned infinite looping.
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The only hope is that FEniCS is being completely overhauled [125] for a future

release in a few years. Perhaps then these issues will be completely resolved. In

addition, significant performance improvements will be realized. If the overhauled

version can achieve both goals, only then will validation testing in 3D be feasible.
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APPENDIX

A Taylor Series Expansions

Recall the Single-Variable Taylor Series Expansion (1TE) from calculus [25]:

Theorem A.1. (Single-Variable Taylor Series Expansion – Point Form)

Let Ω ⊆ R be a domain with x0 ∈ Ω.
Let function u(x) ∈ Ck+1(Ω). Then:

u(x) = u(x0) +
x− x0

1!
· du
dx

∣∣∣
x=x0

+ · · ·+ (x− x0)
k

k!
· d

ku

dxk

∣∣∣
x=x0

+ rk(x;x0)

where rk(x;x0) =
(x− x0)

k+1

(k + 1)!
· d

k+1u

dxk+1

∣∣∣
x=ξ

with ξ ∈ (min{x, x0},max{x, x0}).

Theorem A.2. (Single-Variable Taylor Series Expansion – Perturbed Form)

Let Ω ⊆ R be a domain with (x0, x0 +∆x) ⊂ Ω.
Let function u(x) ∈ Ck+1(Ω). Then:

u(x0 +∆x) = u(x0) +
∆x

1!
· du
dx

∣∣∣
x=x0

+ · · ·+ (∆x)k

k!
· d

ku

dxk

∣∣∣
x=x0

+ rk(x; ∆x)

where remainder term rk(x; ∆x) =
(∆x)k+1

(k + 1)!
· d

k+1u

dxk+1

∣∣∣
x=ξ

with ξ ∈ (x0, x0 +∆x).

Generalizing to a Two-Variable Taylor Expansion (2TE) [25] is necessary for cer-
tain timestepper construction and analysis:

Theorem A.3. (Two-Variable Taylor Series Expansion – Point Form)

Let Ω ⊆ R2 be a star-shaped domain with x0 = (x1,0, x2,0) = (x0, y0) ∈ Ω.
Let function u(x) = u(x1, x2) = u(x, y) ∈ Ck+1(Ω). Then:

u(x, y) = u(x0, y0) +
(x− x0)

1!
· ∂u
∂x

∣∣∣
x=x0

+
(y − y0)

1!
· ∂u
∂y

∣∣∣
x=x0

+
(x− x0)

2

2!
· ∂

2u

∂2x

∣∣∣
x=x0

+
(y − y0)

2

2!
· ∂

2u

∂2y

∣∣∣
x=x0

+
(x− x0)(y − y0)

2!
· ∂2u

∂x∂y

∣∣∣
x=x0

+
(x− x0)(y − y0)

2!
· ∂2u

∂y∂x

∣∣∣
x=x0

+ · · ·+ 1

k!

[
2∑

j=1

(xj − xj,0)
∂

∂xj

]k
u
∣∣
x=x0

+ rk(x, y;x0, y0)

where remainder term rk(x, y;x0, y0) =
1

(k + 1)!

[
2∑

j=1

(xj − xj,0)
∂

∂xj

]k+1

u
∣∣
x=ξ

with ξ ∈ ℓ[x0,x] being a point on the line segment from point x0 to point x.
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Theorem A.4. (Two-Variable Taylor Series Expansion – Perturbed Form)

Let Ω ⊆ R2 be star-shaped domain with open ball B((x0, y0);∆x,∆y) ⊂ Ω.
Let function u(x) = u(x1, x2) = u(x, y) ∈ Ck+1(Ω). Then:

u(x+∆x, y +∆y) = u(x0, y0) +
∆x

1!
· ∂u
∂x

∣∣∣
x=x0

+
∆y

1!
· ∂u
∂y

∣∣∣
x=x0

+
(∆x)2

2!
· ∂

2u

∂2x

∣∣∣
x=x0

+
(∆y)2

2!
· ∂

2u

∂2y

∣∣∣
x=x0

+
∆x∆y

2!
· ∂2u

∂x∂y

∣∣∣
x=x0

+
∆x∆y

2!
· ∂2u

∂y∂x

∣∣∣
x=x0

+ · · ·+ 1

k!

[
2∑

j=1

(∆xj)
∂

∂xj

]k
u
∣∣
x=x0

+ rk(x, y; ∆x,∆y)

where remainder rk(x, y; ∆x,∆y) =
1

(k + 1)!

[
2∑

j=1

(∆xj)
∂

∂xj

]k+1

u
∣∣
x=ξ

with

ξ ∈ ℓ[x0,x0 +∆x] being a point on line segment from x0 to x0 +∆x.

B Chain Rules

Recall the Single-Variable Chain Rule (1CR) from calculus [25]:

Proposition B.1. (Single-Variable Chain Rule)

Let Ω1,Ω2 ⊂ R be bounded domains with t0 ∈ Ω1 and x0 ∈ Ω2.
Let functions x(t) ∈ C1(Ω1) and u(x) ∈ C1(Ω2) such that range[x] ⊆ domain[u].
Then, composite function u ◦ x : Ω1 → R is well-defined and in C1(Ω1) such that

du

dt

∣∣∣
t=t0

=
du

dx

∣∣∣
x=x0

· dx
dt

∣∣∣
t=t0

The following Two-Variable Chain Rule (2CR) [25] is key in Taylor Series and
certain Runge-Kutta timestepper constructions:

Proposition B.2. (Two-Variable Chain Rule)

Let Ω1 ⊂ R and Ω2 ⊂ R2 be bounded domains with t0 ∈ Ω1 and x0 = (x0, y0) ∈ Ω2.
Let functions x(t) ∈ [C1(Ω1)]

2
and u(x) ∈ C1(Ω2) such that range[x] ⊆ domain[u].

Then, composite function u ◦ x : Ω1 → R is well-defined and in C1(Ω1) such that

du

dt

∣∣∣
t=t0

=
∂u

∂x

∣∣∣
x=x0

· dx
dt

∣∣∣
t=t0

+
∂u

∂y

∣∣∣
x=x0

· dy
dt

∣∣∣
t=t0

or written more compactly in terms of a dot product of two vectors

du

dt

∣∣∣
t=t0

= ∇u
∣∣
x=x0

· dx
dt

∣∣∣
t=t0
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C Vector Algebra Identities

The following vector algebra identities [25] are essential:

Proposition C.1. (Useful Vector Algebra Identities)

Let Ω ⊂ Rd be an open connected set with d ∈ {2, 3}.
Let vector fields A(x),B(x),C(x),D(x) ∈ [C(Ω)]d.
Let scalar α ∈ R. Then:

(V A1) A · (B+C) = A ·B+A ·C
(V A2) A× (B+C) = A×B+A×C
(V A3) α(A ·B) = (αA) ·B = A · (αB)
(V A4) α(A×B) = (αA)×B = A× (αB)
(V A5) A ·B = B ·A
(V A6) A×B = −(B×A)
(V A7) A× (B×C) = (A ·C)B− (A ·B)C
(V A8) (A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C)
(V A9) A× (B×C) ̸= (A×B)×C (in general)

D Vector Calculus Identities

The following vector calculus identities [25] will come in handy:

Proposition D.1. (Useful Vector Calculus Identities)

Let Ω ⊂ Rd be an open connected set with d ∈ {2, 3}.
Let scalar field φ(x) ∈ C(Ω) ∩ C1(Ω).
Let vector field A(x) ∈ [C(Ω)]d ∩ [C2(Ω)]d.
Let vector field B(x) ∈ [C(Ω)]d ∩ [C1(Ω)]d. Then:

(V C1) ∇ · (A×B) = B · (∇×A)−A · (∇×B)
(V C2) ∇× (φA) = φ(∇×A) + (∇φ)×A

(V C3) ∇×∇×A = ∇(∇ ·A)−∇2
A

E Divergence Theorem

Recall the Divergence Theorem [25, 44, 74], also known as Ostrogradsky’s Theorem
[99], from elementary multivariable calculus:

Theorem E.1. (Divergence Theorem)

Let Ω ⊂ Rd be a piecewise-smooth bounded domain with d ∈ {2, 3}.
Let n be the outward unit normal vector to the boundary ∂Ω.
Let vector field F(x) ∈ [C(Ω)]d ∩ [C1(Ω)]d.
Then: ∫

Ω

∇ · F dx =

∮
∂Ω

F · n dS
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F Green’s Identities

Recall the integration-by-parts technique from elementary single-variable calculus.
Both the standard statement (IBP) is provided as well as the version used in producing
finite element weak forms of 2nd-order ODE’s & 1D PDE’s (IBP’):

Theorem F.1. (Integration-by-Parts)

Let functions u(x) ∈ C[a, b]∩C2(a, b) and v(x) ∈ C[a, b]∩C1(a, b) where a < b.
Then:

(IBP )

∫
[a,b]

vux dx =
[
vu
]x=b

x=a
−
∫
[a,b]

vxu dx

(IBP ′)

∫
[a,b]

vuxx dx =
[
vux

]x=b

x=a
−
∫
[a,b]

vxux dx

Green’s identities [25, 44, 74] generalize integration-by-parts (IBP’) to integrals
involving certain 2nd-order derivatives in R2 and R3:

Theorem F.2. (Green’s Identities)
Let Ω ⊂ Rd be a piecewise-smooth bounded domain with d ∈ {2, 3}.
Let n be the outward unit normal vector to the boundary ∂Ω.
Let scalar fields u(x) ∈ C(Ω) ∩ C2(Ω) and v(x) ∈ C(Ω) ∩ C1(Ω).
Let vector fields A(x) ∈ [C(Ω)]d ∩ [C2(Ω)]d and B(x) ∈ [C(Ω)]d ∩ [C1(Ω)]d.
Then:

(GI1)

∫
Ω

v∇2u dx =

∮
∂Ω

[
v∇u

]
· n dS −

∫
Ω

∇v · ∇u dx

(GI2) −
∫
Ω

B · (∇×∇×A) dx =

∮
∂Ω

[
B× (∇×A)

]
· n dS

−
∫
Ω

(∇×B) · (∇×A) dx
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G Linear Algebra Lemmas

The following lemma is needed for the proof in Chapter 3 that the GaussLegendre(s)
family of timesteppers are QIP:

Lemma G.1. (Quadratic Form Symmetric Matrix Lemma – QFSML)

Given arbitrary real m ×m matrix A, then quadratic form xTAx can be repre-
sented as xTSx where matrix S is symmetric.

Proof. Let x = (x1, x2, · · · , xm)
T .

Coefficient of term x2
i in xTAx is aii.

Coefficient of term xixj (i ̸= j) in xTAx is aij + aji.
Set entries of S sij = sji = (aij + aji)/2. Then S is symmetric.
∴ Coefficient of term x2

i in xTSx is sii = aii.
∴ Coefficient of term xixj (i ̸= j) in xTSx is sij + sji = aij + aji.

The next lemma is also used in the proof that the GaussLegendre(s) timestepper
is QIP in Chapter 3. It is stated without proof in §IV.2 of [50]:

Lemma G.2. (Quadratic Invariant Lemma – QIL)

Note that u̇ is shorthand for the time-derivative d
dt
[u(t)].

Given model vector IVP (MVIVP):

{
u̇(t) = Ψ(t;u)
u(t0) = u0

Then, quadratic uTSu is invariant ⇐⇒ uTSΨ(t;u) = 0 ∀(u, t) ∈ Rm × [t0,∞)

Proof. WLOG, assume matrix S is symmetric, courtesy of QFSML.

(⇒) : Suppose uTSu is invariant. Then d
dt

[
uTSu

]
= 0 ∀(u, t) ∈ Rm × [t0,∞)

d
dt

[
uTSu

]
= u̇TSu+uTSu̇ = uTST u̇+uTSu̇

SYM
= uTSu̇+uTSu̇ = 2uTSu̇

∴ 0 = d
dt

[
uTSu

]
= 2uTSu̇ =⇒ uTSu̇ = 0

MV IV P
=⇒ uTSΨ(t;u) = 0 ∀(u, t)

(⇐) : Suppose uTSΨ(t;u) = 0 ∀(u, t) ∈ Rm × [t0,∞). Then:

0 = uTSΨ(t;u)
MV IV P

= uTSu̇
SYM
= 1

2
u̇TSu+ 1

2
uTSu̇ = 1

2
d
dt

[
uTSu

]
∴ 1

2
d
dt

[
uTSu

]
= 0 =⇒ d

dt

[
uTSu

]
= 0 =⇒ uTSu is invariant.
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H Tensor Notation

In order to determine the pre-timestepper weak form of the micromagnetics prob-
lem, we will employ tensor notation [46] which is sometimes called Einstein index
notation as it was first introduced in [38]. Since there will be no explicit appeals to
manifolds and differential geometry, all tensor notation indices used will be subscripts,
never superscripts. What follows are the essentials necessary for our purposes.

Definition H.1. (Kronecker Symbols)

The Kronecker symbol δij : N2 → {0, 1} is defined as:

(TNδ) δij :=

{
1 , if i = j
0 , if i ̸= j

Definition H.2. (Permutation Symbols)

The permutation symbol eijk : N3 → {−1, 0,+1} is defined as:

(TNe) eijk :=


+1 , if even permutation
−1 , if odd permutation
0 , if an index is repeated

Since we’re working exclusively in Cartesian coordinates, the volume element is
always unity which leads to a trivial relationship between permutation symbols and
the desired Levi-Civita symbols [46]:

Definition H.3. (Levi-Civita Symbols)
In Cartesian coordinates, the Levi-Civita symbol ϵijk is identical to the corre-

sponding permutation symbol eijk.

Occasionally, the Levi-Civita symbol needs to be reindexed to better align with
an involved vector calculus operation. Reindexing is achieved by swapping two of
the three indices [46]:

Proposition H.1. (Levi-Civita Symbol Index Swap)

Swapping two of the indices of a Levi-Civita symbol changes the sign of the result:

(TNϵ) ϵijk = −ϵkji, ϵijk = −ϵjik, ϵijk = −ϵikj

Armed with the Kronecker and Levi-Civita symbols, we can now state their fun-
damental relation [46]:

Theorem H.1. (Kronecker-Levi-Civita Identity)

(TNδϵ) ϵijkϵiℓm = δiℓδkm − δjmδkℓ
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Note that tensor indices cannot be used without restraint. The following funda-
mental rules of tensor index utility must always be adhered to [46]:

Theorem H.2. (Tensor Notation Rule for Repeated Indices)

Given a term in an expression written in tensor notation, any repeated index
must occur exactly twice. Otherwise, the term is ill-formed and may be remedied by
introducing new indices. For example:

δijAjBj can be rewritten as δijAjBk

ϵijkAiBiCi can be rewritten as ϵijkAiBjCk

δijAijδijBij can be rewritten as δijAijδkmBkm

ϵijkAiBjCkϵijkDiEjFk can be rewritten as ϵijkAiBjCkϵmnpDmEnFp

Theorem H.3. (Tensor Notation Rule for Live Indices)

Given an equation written in tensor notation, any live index must occur on both
sides of the equation. Otherwise, the equation is ill-formed. For example:

Dm = δijAiBjCk can be rewritten as
Dk = δijAiBjCk or
Dm = δijAiBjCm

Table H.2: Tensor Form of Vector Algebra & Vector Calculus Operations

OPERATION NON-TENSOR FORM TENSOR FORM

Standard Basis ê1 =
[
1
0

]
, ê2 =

[
0
1

]
êi (TN0)

Dot Product u · v := u1v1 + u2v2 u · v = uivi (TN1)

Cross Product u× v :=

[
u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

]
u× v = ϵijkuivj êk (TN2)

Scalar Triple

Product
u · (v ×w) u · (v ×w) = ϵijkuivjwk (TN3)

Frobenius

Product

A : B := a11b11 + a12b12
+ a21b21 + a22b22

A : B = aijbij (TN4)

Divergence ∇ · F(x) := ∂F1

∂x1
+ ∂F2

∂x2
∇ · F(x) = ∂kFk (TN5)

Curl ∇× F(x) :=

 ∂F3

∂x2
− ∂F2

∂x3
∂F1

∂x3
− ∂F3

∂x1
∂F2

∂x1
− ∂F1

∂x2

 ∇× F(x) = ϵijk∂iFj êk (TN6)

Vector Gradient ∇f(x) :=
(

∂f
∂x1

, ∂f
∂x2

)
∇f(x) = ∂if ê

T
i (TN7)

Tensor Gradient ∇F(x) := (∇F1,∇F2)
T ∇F(x) = ∂kFj êj ê

T
k (TN7)

Scalar Laplacian ∇2f(x) := ∂2f
∂x2

1
+ ∂2f

∂x2
2

∇2f(x) = ∂i∂if (TN8)

Vector Laplacian ∇2
F(x) := (∇2F1,∇2F2)

T ∇2
F(x) = ∂j∂jFkêk (TN8)
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I Normed Linear Spaces

Normed linear spaces [78, 105, 117] provide a fundamental means of measuring
the “size” of various mathematical objects:

Definition I.1. (Linear Space)

A set V is a linear space (or vector space) if vector addition and scalar multipli-
cation are well-defined for all elements in V .

Definition I.2. (Norm)

Let V be a linear space. Let vectors u,v ∈ V and scalar α ∈ R.
A norm on V is a mapping || · || : V → R satisfying the axioms:

||u|| ≥ 0 (Non-negativity of norm)

||u|| = 0 ⇐⇒ u = 0⃗ (Only zero vector has zero norm)
||αu|| = α||u|| (Scalar multiple is factorable)
||u+ v|| ≤ ||u||+ ||v|| (Triangle Inequality for norm)

Definition I.3. (Normed Linear Space)

A linear space V with a norm || · || is called an normed linear space.
A compact notation for a normed linear space is (V, || · ||).

J Inner Product Spaces

Inner product spaces [75, 78, 105, 117] are the essential makeup of the Hilbert
spaces encountered in Chapters 4,5,6 and 7:

Definition J.1. (Inner Product)

Let V be a linear space. Let vectors u,v,w ∈ V and scalar α ∈ R.
An inner product on V is a mapping ⟨·, ·⟩ : V × V → R satisfying the axioms:

⟨u,u⟩ ≥ 0 (Non-negativity of self-inner product)

⟨u,u⟩ = 0 ⇐⇒ u = 0⃗ (Only zero vector has zero self-inner product)
⟨u,v⟩ = ⟨v,u⟩ (Commutativity of inner product)
⟨αu,v⟩ = α⟨u,v⟩ (Scalar multiple is factorable)
⟨u,v +w⟩ = ⟨u,v⟩+ ⟨u,w⟩ (Distributivity of vector addition)

Definition J.2. (Inner Product Space)

A linear space V with an inner product ⟨·, ·⟩ is called an inner product space.
A compact notation for an inner product space is (V, ⟨·, ·⟩).
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K Hilbert Spaces

Hilbert spaces [78, 105] are core to finite element methods. Loosely speaking,
Hilbert spaces are inner product spaces with no “gaps”, which is formally called
completeness of the space:

Definition K.1. (Hilbert Space)

A Hilbert space is a complete inner product space.

The Hilbert spaces used here from Chapter 4 to Chapter 7 [16, 13, 80, 44, 62, 74, 90]
are function spaces defined in terms of the special Hilbert space L2(Ω).

Proposition K.1. Let Ω ⊂ Rd be a bounded domain with d ∈ {1, 2, 3}.
Then the function space

L2(Ω) :=

{
u : Ω→ R

∣∣∣ ∫
Ω

u2 dx <∞
}

is a Hilbert space with associated inner product

⟨f(x), g(x)⟩ :=
∫
Ω

fg dx

where the integral is understood to be with respect to Lebesgue measure [78, 105].

For L2(Ω), the lack of “gaps” is formally expressed as follows [78, 105]:

Corollary K.1. (Corollary to Proposition K.1)

Let (uk) be a sequence of functions in L2(Ω) such that the infinite series
∑∞

k=1 uk

absolutely converges, meaning
∑∞

k=1

(∫
Ω
u2
k dx

)1/2
< ∞. Then, the infinite series∑∞

k=1 uk converges to a function u in L2(Ω).

L Inequalities

The following inequalities [44, 74, 90] stem from functional analysis [105], a branch
of mathematics with its building blocks from linear algebra [75, 117], real analysis [78]
and point-set topology [1, 27]. These inequalities are key to many proofs involving
error estimates:

Theorem L.1. (Triangle Inequality)

Let (V, || · ||) be a normed linear space. Then:

||u+ v|| ≤ ||u||+ ||v|| ∀u,v ∈ V

Theorem L.2. (Cauchy-Schwarz Inequality)

Let (V, ⟨·, ·⟩) be an inner product space. Then:

|⟨u,v⟩| ≤ ⟨u,u⟩1/2⟨v,v⟩1/2 ∀u,v ∈ V
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M B-Stability

Two new stability notions are needed for one of the barriers in section 3.12 [49]:

Definition M.1. (B-Stability)

A Runge-Kutta timestepper is B-stable if when applied to the model IVP (MIVP),
the contractivity condition

⟨Ψ(t, u)−Ψ(t, v), u− v⟩ ≤ 0 (M.1)

implies for all timestep sizes ∆t

||u(1) − û(1)|| ≤ ||u0 − û0|| (M.2)

where u(1), û(1) are the computed solution values after a single timestep starting
with initial values u0, û0, respectively.

Definition M.2. (Algebraic Stability)

Given an arbitrary s-stage Runge-Kutta timestepper RK(s), define matrix M as

M := [mij]s×s such that mij := γiβij − γjβji− γiγj (M.3)

RK(s) is algebraically stable if γ1, · · · , γs ≥ 0 and M is non-negative definite.

Definition M.3. ( Non-confluent Runge-Kutta Timesteppers)
A Runge-Kutta timestepper is non-confluent if its αj’s are all distinct.

For many timesteppers, B-stability and algebraic stability are synonymous [49]:

Proposition M.1. ( Algebraic Stability & B-Stability Equivalence)
Algebraic stability and B-stability are equivalent for non-confluent or S-irreducible

Runge-Kutta timesteppers. See [49] for the definition of S-irreducibility.

Some IRK timesteppers built from collocation are B-stable but others are not [49]:

Theorem M.1. (Collocation & B-stability)
GaussLegendre(s), RadauIA(s), RadauIIA(s) and LobattoIIIC(s) are all B-stable.
Lobatto IIIA(s) and Lobatto IIIB(s) are not B-stable.

B-stability is a measure of non-linear stability such that B-stability implies A-
stability [49]. However, B-stability is different from L-stability – as an example,
Scherer’s DIRK(2) timestepper [109] in Table 2.9 is L-stable but not B-stable.

For this dissertation, algebraic stability and B-stability are only used in the state-
ment of one of Hairer’s barriers for DIRK timesteppers in section 3.12. Elsewhere, we
will never mention algebraic stability or B-stability again as L-stability is a sufficiently
strong notion of stability for our needs.
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