
Simulation of time-dependent PDE’s with finite elements

and high-order A-stable IRK timesteppers

Josh Engwer

November 30th 2016

Explicit Runge-Kutta (ERK) timesteppers such as Forward Euler & Classic RK4 are desired due to their relative ease of

implementation and low computational cost. However, they tend to be unstable for most real-world time-dependent ODE’s

& PDE’s unless the timestep ∆t is reduced to an impractically small value as dictated by possible constraints (such as the

Courant-Friedrichs-Lewy condition for hyperbolic PDE’s for example.) At best, this results in unbearably long running times

in order to achieve a stable simulation with a meaningful time interval, [0, T ]. At worst, the required timestep size ∆t is smaller

than machine precision εmach, effectively rounding down the timestep to zero!

To help mitigate these potential issues, one is encouraged by Dalquist’s 2nd Barrier to resort to A-stable implicit Runge-

Kutta (IRK) timesteppers, the simplest of which is Backward Euler. Unfortunately, Backward Euler is only a 1st-order

timestepper, meaning halving the timestep only halves the solution error. One can do far better than that as there are several

classes of higher-order A-stable IRK timesteppers to choose from. In particular, the s-stage Gauss-Legendre (GLs) family of

IRK methods will be considered as they are A-stable as well as symplectic.

TIMESTEPPER: BUTCHER TABLEAU: ORDER:

GL1
1
2

1
2

1
2nd-order

GL2

1
2
− 1

6

√
3 1

4
1
4
− 1

6

√
3

1
2

+ 1
6

√
3 1

4
+ 1

6

√
3 1

4

1
2

1
2

4th-order

Higher-order IRK timesteppers are typically introduced to solve certain stiff ODE’s, and occasionally they are utilized to-

gether with finite difference methods (FDM’s) in solving certain time-dependent PDE’s. This talk will utilize these timesteppers

with Lagrange finite elements in order to solve the non-linear Heat Equation equipped with inhomogeneous Dirichlet boundary

conditions: 
PDE: ut −∇ · (q(u)∇u) = f(t;x) in Ω := [0, 1]× [0, 1]

BC’s: u = uD on ∂Ω

IC: u = u0 at t = 0

where q(u) := u2 and x = (x, y)T and u ∈ C(2,1)(Ω× [0,∞))

The simulation codes use the open-source FEniCS finite element framework to provide the necessary finite element method,

and additional Python code is used to produce the timestepping, solution visualization, L2 solution error, validation tests, and

convergence rate plots of Heat Equation problems constructed using the ’Method of Manufactured Solutions’. Some remarks

regarding implementation in FEniCS will be provided.


