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Drone Helps Privacy: Sky Caching Assisted
k-Anonymity in Spatial Querying

Hema Naga Sai Sudha Jagarlapudi, Sunho Lim , Jinseok Chae , Gyu Sang Choi , and Cong Pu

Abstract—As wireless and mobile devices are prevalent and
resource-rich, users can frequently query point-of-interests and en-
joy diverse location-based services (LBSs) in infrastructure-based
wireless networks. However, users often trade their location privacy
with services by sharing their location information with an LBS
server, without knowing that the server can fully be trusted. In this
article, we propose a sky caching-aided spatial querying scheme
with the support of a flying drone. The basic idea is that both
the user and its drone collaboratively generate a set of dummy
locations to hide the current location of the user from the server.
We also propose cache admission control techniques to efficiently
cache the queried results to minimize the number of duplicated
cached copies. The location privacy is analyzed and measured in
terms of the location obfuscation and the size of the convex hull area
that consists of dummy locations resided within the cloaking areas
of user and drone. We conduct extensive simulation experiments
using the OMNeT++ for performance evaluation and comparison.
The simulation results show that the proposed approach can reduce
the number of queries sent to the server, extend the cloaking area,
and improve the location privacy of users significantly.

Index Terms—k-Anonymity, cache, drone, location privacy,
spatial query.

I. INTRODUCTION

A S SMARTPHONES are becoming increasingly popular
and resource-rich, users1 run mobile applications (Apps)

and enjoy diverse location-based services (LBS), applications,
and systems, such as geo-social networking, vehicle navigation,
or point-of-interest (POI) queries. For example, smartphone
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1In this article, we use the term user and smartphone user interchangeably to

refer to a mobile device or a person who carries it.

users in the world are about 3.8 billion in 2021 and it is more
than 48% of the world’s population. In particular, smartphone
users in the U.S. are about 280 million in 2020 and it is expected
to grow more than 311 million by 2025 [1]. With jumping on the
bandwagon, location-based (or geo-targeted) mobile marketings
are rapidly growing. For example, e-flyers are broadcasted wire-
lessly to the users who are closely located to their POIs. Unlike
traditional advertisements through the mass media, the markets
spent about$17 billion for location-based mobile advertisements
and their expenditure will increase more than $38 billion by
2022 [2]. Over 50% of U.S. brands already utilize location data
for their business purposes and upgrade or newly deploy LBS
applications and systems for marketing aggressively.

When a user requests an LBS, it generates and sends a
location-based query (later in short, query) piggybacked with its
current location to an LBS server.2 In this query, it is implicitly
assumed that the user has agreed to share the current location
with the server without knowing that the server could fully
be trusted. In fact, more than 65% of users reveal or share
their location with a weather App [3], trading their location
privacy with the service. Since the server can collect and store
incoming queries in local storage, it might easily infer a cer-
tain level of confidential information by analyzing and tracing
the locations obtained from users, such as home and working
locations, mobility patterns, life preferences, or even health
conditions. The server could also release or sell the confidential
information extracted from the queries to the third parties for
mobile marketing without the consensus of users. An adversary
could even compromise the server and misuse the stored loca-
tion information. In addition, recent smartphone-based social
networks and applications often share users’ sensitive location
information and expedite the privacy breaches [4]. In light of
these, spatial cloaking techniques have been widely used by
considering location perturbation, obfuscation, anonymity, and
their variants [5]–[11].

In this article, we identify a set of implicit assumptions and
potential issues observed in prior LBS literature. 1) Frequent
queries: When a user sends a query to a server, it often generates
a set of dummy locations resided within a cloaking area to
hide its current location from the server. Upon receiving the
queried results from the server, the user answers the query
and caches the queried results in local storage. Due to blind
caching or the lack of cache management mechanism for the

2From a user’s point of view, an access point (AP) or base station (BS) is
transparent to an LBS server. Thus, we use the terms AP (or BS) and LBS server
(later in short, server) interchangeably in this article.
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queried results, the user tends to send more queries to the server.
This can increase the chance of the user revealing its current
location to the server. The server may infer the user location by
analyzing multiple incoming queries, e.g., inference attack. 2)
Obsolete user query probability: A set of dummy locations can
be selected based on the previous query history. A queried area
is virtually divided into a set of rectangle cells and each cell
has a user query probability [8]. A set of cells having the same
or similar query probabilities is chosen as dummy locations to
achieve the maximum entropy. Since the query probabilities are
time-varying, however, it is hard (if it is not impossible) for each
user to keep the most updated query probabilities in the area.
Prior approaches of the user query probability sharing can be
deployed. For example, the server can periodically disseminate
the user query probabilities, or local access points (APs) can
collect and broadcast them. However, the approaches require
a nonnegligible computing and communication overhead. A
local AP can even easily be compromised by an adversary.
3) Attack-prone peer-to-peer queries: To achieve k-anonymity,
a query issuing node often requests a set of locations from its
adjacent nodes to collect k – 1 dummy locations to hide its
real location. In this approach, there is an implicit assumption
that each node will collaboratively forward and share the query
result and location information, resulting in another location
privacy issue. Since the query is disseminated to the network in
an ad hoc manner [12], [13], public key infrastructure based on
cryptography tools can be deployed to avoid an eavesdropping
attack from an adversary. However, the adversary can also
conduct a denial-of-service attack to interfere with any ongoing
communication, such as a selective forwarding attack [14].

In light of these, we propose a novel sky caching-aided spatial
querying scheme in the LBS, in which a low-altitude unmanned
aerial vehicle (UAV) [15], commercially well known as a drone,
is deployed. Drones are increasingly popular to the public be-
cause of their versatility, easy installation and interface, and
relatively low operating cost. Thus, we envision that each user
will equip with a light-weighted, micro-sized, and user-friendly
drone embedded into a smartphone in near future. The basic
idea is that a user and its personal drone will conduct querying
and caching operations collaboratively to protect the location
privacy from the server. To the best of our knowledge, no prior
research effort has been devoted to deploying drones to protect
the location privacy of the user in spatial querying research. Our
contributions are summarized as follows.

1) We newly introduce a use case of the drone by deploying
it as an object that can assist in preserving the user’s lo-
cation privacy. The research paradigm of drones has been
changed from privacy-defending from a malicious drone,
often witnessed in traditional drone-based literature, to
privacy-assisting with the help of a drone.

2) We propose a sky caching-aided spatial querying scheme
and its corresponding operations with the support of a
flying drone. Both user and drone collaboratively generate
a set of dummy locations for querying operations to hide
the current location of the user from the server.

3) We also propose three cache admission control (CAC)
techniques to efficiently cache the queried results in
the local storage of user and drone: switched, filtered,

and forward. This approach reduces the duplication of
cached copies between the user and drone to increase the
accessibility of queried results received from the server.

4) The drone-assisted location privacy is analyzed in terms of
the location obfuscation and the size of the cloaking area.
The size of the extended cloaking area is measured using
a convex hull that consists of dummy locations chosen by
the user and drone.

We develop a customized discrete-event driven simulator
using the OMNeT++ [16]. We extensively conduct simulation-
based studies to observe the impact of query interval and
anonymity on the caching and location privacy performance.
We also measure the performance in terms of the cache hit that
consists of local and remote cache hits, the number of cache
replacements, the number of queries sent to the server, and the
size of the convex hull area. The simulation results show that
higher cache hits and the extended cloaking area can reduce the
chance of user revealing its location privacy to the server.

The rest of this article is organized as follows. The prior work
is briefly reviewed and analyzed in Section II. We propose and
analyze drone-assisted spatial querying and caching strategies
and their corresponding operations in Section IV. The proposed
scheme is extensively evaluated, analyzed, and discussed in
Sections V and VI. The concluding remarks are presented in
Section VII.

II. RELATED WORK

A significant research effort has been devoted to develop-
ing location privacy-preserving strategies. Location perturbation
has been widely used with techniques, including virtual dum-
mies [5], [6], [9], [10], [17], spatial cloaking [7], [18]–[21],
differential privacy [11], [22], caching [12], [13], [23]–[27],
information theories [28], [29], and their variants, to protect the
location privacy of users from an untrusted server or an adver-
sary. We classify and analyze prior location privacy-preserving
approaches and their querying operations.

Privacy-Preserving Location Perturbation: The basic idea is
to add a random or strategic noise into a location query on pur-
pose to obfuscate the query result. For example, a set of locations
including a query issuing user and its neighbors is sent to the
server as a part of query parameters to hide the exact location
of the user from the server [5], [6]. In location obfuscation
[7], [9], [18], a set of dummy or fixed locations is required to
form a query. To achieve k-anonymity, a queried area is often
geographically enlarged to encompass at least k – 1 dummy
or real users’ locations. However, k-anonymity may need an
extra computation to create or locate k – 1 additional locations
and reduce the accuracy of query results replied from the server.
In [18], a set of dummy locations is generated without deploying
a trusted third-party anonymizer, and its corresponding mobility
is also updated based on the density of queried areas to avoid
an adversary from tracking the real location. To reduce the
communication cost, the amount of unnecessary queried results
received from the server is limited by using keywords that do
not relate to the queried location data. To remove any trusted
entity, however, a function generator located between users and
the server periodically distributes transformation parameters to
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them [21]. These parameters are used to convert real locations
to dummy locations and vice versa. In [19], each user specifies
a privacy profile containing k-anonymity requirements and the
minimum size of the cloaking area. The size of the cloaking area
can be variable depending on the distribution of users, indexed
by a hierarchy of grid structure. A virtual circle or square-shaped
cloaking region is often created to include the locations of
user and k – 1 dummies, in which the distribution of dummy
locations can be controlled [7]. In [10], a set of dummy locations
is generated and filtered out by considering a spatiotemporal
correlation in terms of reachability, direction similarity, and
in-degree/out-degree to prevent the server from identifying or
inferring the dummies. A differential privacy scheme is proposed
by perturbing a user location in an LBS network that is virtually
divided into a set of hexagon cells [11]. The user’s real location is
hidden by generating a noise, which becomes a dummy location.
Rather than piggybacking the dummy location into the query
directly, a cell containing the real and dummy locations and its
central location are sent to the server.

Privacy-Preserving Caching: Users cache the LBS data ob-
tained from prior queries in local storage to answer potential
future queries without contacting the server. This caching tech-
nique can reduce the query latency, the number of queries sent
to the server, and the probability of the exact location of the user
exposed to the server. In the MobiCrowd [30], each user requests
its adjacent users of interested LBS data in a peer-to-peer (P2P)
manner and sends a query to the server, only if the requested LBS
data are not locally available. The Caché is proposed to improve
the location privacy of users by periodically prefetching LBS
data of large geographic areas, where users would most likely
visit [24]. Users can either locally access cached LBS data with
a long time-to-live period according to the preferred POIs or
only share a general geographic region with the server.

The MobiCache combines caching and k-anonymity tech-
niques to improve the location privacy by increasing the cache
hit of the stored LBS data [12]. Here, a network area is virtually
divided into a set of cells, and k – 1 dummy locations are
randomly selected from the cells that have never been queried.
In [13], the cache hit can be improved using a caching-aware
dummy selection algorithm by carefully selecting k – 1 dummy
locations that either have similar query probabilities or can
contribute more to caching performance. All queried results
sent from the server are cached for potential future queries. The
proposed algorithm is further enhanced by relaxing its implicit
assumption of query probabilities that are stable for an entire
day [27]. All the cells of query probability are observed over dif-
ferent time slots and modeled by different normal distributions.
The selected dummy locations have similar mean and standard
deviation values of distribution to that of the query originating
location. Unlike pull-based querying from users to the server,
cache proxies located in strategic places push the most popular
location-related content to visiting users [25]. Here, a cache
proxy is located between users and the server stores on-flying
queried results to save the query latency and network traffic
outgoing to the server. If a requested query is not found in the
pushed content, cache miss, the user generates and sends a query
containing k – 1 dummy locations to the server.

The Cachecloak plays a role as a trusted third-party
anonymizer located between the server and users and replies
cached LBS data to the users [23]. When a user generates a query,
the Cachecloak sends a predicted user path that is extended until
the path is intersected with other paths to avoid a series of user
locations from being tracked by the server. In [26], a trusted
anonymizer also cloaks the current locations of users and caches
frequent queried results to directly answer future queries. Since
the trusted anonymizer can be compromised by an adversary,
however, each user caches extra queried results and shares them
with others through a P2P network, where queried results are
extensively searched before the queries are submitted to the
server [31].

Privacy-Preserving Drone: Drones are equipped with de-
vices, such as a camera, sensor, or radar and often deployed
in a mission-oriented operation (e.g., aerial surveillance or
reconnaissance) to track, monitor, or sense important objects
and restricted or cyber-critical areas to collect privacy- and
security-sensitive information. Single or multiple drones can
also play an important role as a cellular-connecting node not
only to seamlessly relay ongoing communications for improving
the connectivity but to cache popular data items in a local
storage for enhancing accessibility and availability [32], [33]. An
object tracking drone records and extracts only meaningful and
intended information from the surrounding objects and scenes
using recent vision and deep learning techniques to avoid any
unnecessary privacy issues [34]. Proposed approaches in [35]–
[37] protect users and restricted or cyber-critical areas from an
unwanted intrusion and attack by, for example, regulating the
drone’s altitude and adjusting its attached equipment capabil-
ity. In [38], the fifth generation (5G) enabled drones deploy
a blockchain-based consensus technique to protect data and
trajectory privacy from a malicious drone. The malicious drone
may conduct misbehavior by disrupting a drone network and
intercepting data transmissions between legitimate drones.

In summary, as far as the authors’ best knowledge, the pro-
posed approach that integrates drone-aided aggregate caching
and k-anonymity techniques to protect the location privacy of
users has not been investigated in the realm of LBS. We also
shift a research paradigm of drones from protecting users and
restricted areas from a privacy-invading drone into helping in
hiding sensitive location information of users from the server
and adversary in this article.

III. SYSTEM AND THREAT MODELS

First, we present a system model of user and drone in general.
Users carry a wireless and mobile device (e.g., smartphone)
equipped with an onboard global positioning system (GPS) and
freely move in the network under a mobility model, such as a
random waypoint. Each user is aware of the current location and
generates a spatial query for a POI that is closely located to its
current location. When the user receives a query result from a
server, it stores the query result in local storage. To partially
assist the query operation, a programmable and micro-sized
drone is able to take off and land back after completing a mission
and fly toward a specific location in an autonomous mode [39].
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Fig. 1. (a) User generates a query for a POI and sends the query to a server.
Here, a user, adversary, and POI are marked as a black circle, red circle, and
star, respectively. A dashed line of circle shows a communication range of user.
(b) Set of dummy locations is generated within a cloaking area that is the same
as the communication range of user. Here, the cloaking area is marked by a
single-dot dashed line.

The drone is basically equipped with a wireless communication
device and GPS. Depending on a query mission, the drone can
also attach any device and sensor, such as a camera, lidar, or
radar. However, the drone may have limited computing power,
memory storage, and battery power. The drone can also be
affected by weather (e.g., wind) and may not correctly navigate
to the location requested by the user.

Second, we present a threat model of server and adversary
and its potential misbehavior or attack. A server connected with
the infrastructure is located between users and their launching
drones. The server relays ongoing communications and answers
the queries generated by users and drones. When a user generates
a query, an anonymizer can be deployed to generate and collect
a set of dummy locations to hide the user’s real location from the
server by using a P2P communication with other users. Here, the
anonymizer is located between the user and server and is often
assumed to know and store the users’ location information. In
this article, we do not deploy the anonymizer in LBS because this
third-party anonymizer could be compromised by an adversary.
The server could also be compromised by the adversary and
behave maliciously. Since the server receives and stores all
queries and their corresponding location information from users
and drones, it might conduct an inference attack by extracting
side information and deduce the users’ location information.
In addition, the adversary could intercept any on-flying packet
in the network. A set of network components is depicted in
Fig. 1(a).

IV. PRIVACY-PRESERVING SPATIAL QUERYING AND SKY

CACHING

In this section, we first overview a basic k-anonymity based
query operation. Then we present drone-based query and
caching operations and analyze the location privacy of users.

A. Basic Query Operation With k-Anonymity

When a user generates a query for a POI, it checks its local
cache if the queried result is available to answer the query. We
consider a static POI that is stationary or does not change its
location in a short period, such as a gas station, restaurant,

museum, hospital, etc. [40]. If the queried result is not found
in the cache, the user sends the query to a server. The query
contains the current location of the user (e.g., (x, y)), k – 1
dummy locations, a queried POI (POIqry), and a radius of query
area (r), where k is meant to k-anonymity. To prevent the server
from inferring the exact location of the user, the user randomly
generates k – 1 dummy locations and mixes them with its current
location. As depicted in Fig. 1(b), a set of dummy locations is
generated within a virtual circle, cloaking area. In this article, the
size of the cloaking area is the same as the user’s communication
range. We limit the size of query area in searching the queried
POI in the network. This is because the queried POI located
far away from the user may not be useful. We also set the size
of the query area to the same size as the user’s communication
range. As the cloaking area increases, dummy locations can be
distributed widely in the network. The server becomes harder
to infer the exact location of the user. Since the size of the
cloaking area is set to the same size as the query area, however,
the number of queried POIs replied from the server to the user
can be increased. This can increase network traffic and some
of queried POIs received may not be fully utilized. Thus, both
cloaking and query areas are not increased blindly.

When the server receives a query from a user (ui), pqry,i

[(x, y)k, POIqry, r], it searches the queried POI that is found
within the query area for k locations repeatedly. The server
collects the locations of queried POI, piggybacks them to a query
reply, prpy,i [(x, y)POIqry,k], and sends it back to the user. Upon
receiving the query reply from the server, the user extracts one
of the queried results to answer the query and caches all the
queried results in local storage.

Although multiple locations of queried POI can be found, the
server might conduct a bait attack by replying a single location
to lure the user to the queried POI location and attempt to reveal
the current location of user. The server can also attempt to
reveal the user path by replying a set of single POI locations
consecutively. This is because the server could be compromised
and show such misbehavior or contract with a third party to
advertise a specific POI location for a business purpose. In this
article, unless otherwise specified, the user discards the query
reply piggybacked with a single POI location to defend the bait
attack. The user only accepts the query reply piggybacked with
multiple locations of queried POI and chooses the one of POI
locations randomly.

B. Drone-Assisted Query and Cache Operations

In this article, we deploy a drone to assist a query operation
as well as protect the location privacy of the user from a server.
The basic idea is that the drone helps the user in generating a
set of dummy locations to confuse the server in identifying and
tracking the exact location of the user. Also, both the user and the
drone judiciously cache the received queried results to improve
the cache hit, reducing the number of queries sent to the server.
Here, we consider two types of cache hit, a local cache hit, and
a remote cache hit. A local cache hit occurs when the queried
data item is available in the user’s local cache. A remote cache
hit implies that the queried data item is available in the drone’s
local cache.
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Fig. 2. (a) Drone communicates with both user and server. A communication
range of drone is marked as a dashed line. (b) Drone follows a circular mobility
model and generates a set of dummy locations. Here, the drone’s circular path
is marked as a double-dots dashed line.

First, a drone can communicate with both user and server
as depicted in Fig. 2(a). The drone and user can communicate
directly if they are located within their communication ranges.
When the drone is out of the communication range of the user, it
can still communicate with the user through the server indirectly.
The communication range of the drone may vary depending on
the capacity of the wireless device attached. In this article, we
assume that both communication ranges of the user and the drone
are the same. As shown in Fig. 2(b), the drone moves under
a circular mobility model. As the user moves, the drone flies
around the user by keeping a distance between them. The drone
can play a role as a dummy user and hide the real user’s location
from the server. Other mobility models can also be applied to
the drone, such as linear, zig-zag, or random.

Second, when a user (ui) generates a query that cannot be an-
swered by its local cache, it can either send the query to the server
or forward the query to a drone (di). If the user randomly decides
to forward the query to the drone, it generates k – 1 dummy
locations and piggybacks them to the query including its current
location. Upon receiving the query, the drone searches its local
cache and replies a query result to the user directly, if cached.
If not, the drone also generates k′ dummy locations within
its cloaking area as shown in Fig. 2(b). The drone-generated
dummy locations can be part of or added to the k – 1 dummy
locations that the user has originally generated. Then there are
several variants in selecting the number of dummy locations. For
example, the drone can randomly choose k dummy locations
including the current location of the user out of k + k′. To
clearly see the impact of the number of dummy locations, we
use the combined k + k′ dummy locations for the query. The
drone piggybacks the combined dummy locations to the query
and sends it to the server, pqry,i [(x, y)k+k′ , POIqry, r]. When the
server receives the query, it collects the locations of queried POI
that are resided within the query area for each k + k′ location,
piggybacks them to a query reply, prpy,i [(x, y)POIqry,k+k′], and
sends it back to the query sender. In fact, the server does not
know whether the query is originally generated and sent from
the user or drone. Thus, the drone can play a role as another user
and hide the real user’s location from the server.

When the drone is far away from the user, both cloaking
areas of the drone and user can be separated without overlap.
Then the server may easily identify which dummy location (e.g.,

k = 1 or k′ = 1) has been generated from which cloaking area.
To avoid generating dummy locations blindly, if the distance
between user and drone is temporarily greater than the radius
of communication range, both the user and the drone should
not generate dummy locations but wait until they are located to
communicate directly.

Third, when the drone receives the query reply, it checks the
number of replied POI locations. If a single POI location is
replied to, the drone drops it immediately to defend against a
luring attack from the server. If not, the drone triggers a CAC to
decide whether it caches the queried POI locations in its local
storage and/or forward them to the user.

C. Drone-Assisted Cache Admission Control

We also propose three drone-assisted CAC schemes to effi-
ciently cache the queried results in the user and/or drone: 1)
switched, 2) filtered, and 3) forward. The primary goal of CAC
is to decide whether to cache the queried results or not in order
to improve the data accessibility and availability that can be
measured by cache hit. In this article, we consider the concept
of aggregate caching in which both caches of user and drone
virtually form an aggregate cache [41]. The decision of whether
to cache the queried results depends on the user itself as well
as the drone. Since the drone is often limited by resource (e.g.,
smaller cache size) compared to that of the user, it caches only a
part of the queried results in local storage. Thus, the basic idea is
to cache as many queried results as possible but to avoid storing
too many duplicated cache copies in both user and drone to
improve the cache hit. A rationale behind these CAC techniques
is to reduce the number of queries sent to the server, ultimately
decreasing the probability of user location being exposed to the
server and enhancing the location privacy of the user.

First, we describe three CAC schemes and their basic caching
operations. 1) In the switched scheme, both the user and the drone
cache the queried results alternately. If the drone has cached the
queried results first, then it forwards the next queried results
to the user and vice versa. In this scheme, both the user and
the drone try to keep the recent queried results in their caches.
2) The filtered scheme allows both the user and the drone to
selectively cache the queried results that are not currently stored
in the cache. The rest of queried results that are not cached
in the drone is forwarded to the user and vice versa. In this
scheme, the user or drone updates its cache first with the recent
queried results. The queried results forwarded to either the drone
or user may partially be duplicated with the existing cached
data items. 3) In the forward scheme, the drone forwards the
queried results to the user. Then the user caches the queried
results forwarded and triggers a cache replacement policy when
the cache becomes full. When the existing cached data items are
evicted, the user sends them to the drone for caching. When the
drone’s cache becomes full, it also triggers a cache replacement
policy and removes any evicted data item permanently. Here, the
least recently used (LRU) is deployed for the cache replacement
policy.

Second, we analyze and compare three CAC schemes. All
three CAC schemes follow the aggregate caching and try to
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Fig. 3. Pseudocode of our proposed drone-assisted spatial querying
operations.

distribute the queried results to the user and drone to increase the
cache hit. Since the user frequently generates queries, aggressive
caching at the user side is important to reduce the query delay.
However, we put more weight on the data accessibility than on
the query latency. Thus, the drone caches the queried results
just like the user. This is because the number of queries sent
to the server in case of cache miss directly affects the location
privacy of the user. Also all three CAC schemes are sensitive
to the level of anonymity (k) because of the limited cache size.
As k increases, the size of queried results increases, and more
cached data can be evicted for cache replacement. Both filtered
and forwarded schemes may send more cached data evicted from
the user to the drone, or vice versa. The switched scheme does
not forward any evicted cached data to the other part. The overall
proposed drone-assisted spatial querying and caching operations
are summarized by an event-driven pseudocode in Fig. 3.

D. Analysis of Drone-Assisted Location Privacy

We analyze location privacy with the help of drones in two
aspects: location obfuscation and cloaking area. We also mea-
sure the location privacy in terms of cache hit and size of convex
hull area.

Location Obfuscation: We count a local cache miss when a
user randomly forwards a query either to the drone or server,
but the queried data item is not found in the user’s cache. The
drone may also send the forwarded query from the user to the
server if the queried result is not available either, which is called
a remote cache miss. The number of queries sent to the server
is proportional to the cache misses. In this article, we deploy
three CAC techniques to increase both local and remote cache
hits by reducing the duplicated cached copies stored in both
user and drone. Higher cache hits not only reduce the number
of queries sent to the server but also decrease the chance of the
user revealing the current location from the server.

Cloaking Area: When a user forwards a query to a drone, it
piggybacks k dummy locations including its current location to
the query. k – 1 dummy locations are randomly generated within
the user’s cloaking area. When the drone receives the query, it
also generates k′ dummy locations resided within its cloaking
area. Since the drone moves around the user by following a
circular mobility, the cloaking areas of both user and drone are
partially overlapped [see Fig. 2(b)]. In this article, we deploy
a convex hull algorithm to approximate the size of combined
cloaking areas. A convex hull is the smallest convex polygon
containing a given set of points in a 2-D area. We use the
Graham-Scan based method [42] to construct a convex hull.
Given randomly generated k + k′ dummy locations, we initially
choose a location with the minimum x- and y-coordinates and
sort the rest of the locations based on the angle to the location
in counterclockwise order. Then the initially chosen location is
connected with a location with the minimum angle. We incre-
mentally keep connecting the locations only if they are located
to the counterclockwise of the line connecting the previous
two locations. This convex hull becomes an area where k + k′

dummy locations reside. The bigger the size of the convex hull
area is, the harder the server guesses the exact location of the user.
Note that the size of the convex hull area is directly proportional
to the cloaking area where the dummy locations are distributed.
If the dummy locations are widely spread out in the area, the
size of the convex hull area increases.

In summary, the proposed drone-assisted spatial querying can
improve location obfuscation and extend the cloaking area. A
location obfuscation can be enhanced because both the user and
the drone can generate a query and a set of dummy locations
collaboratively. The server can be confused in identifying and
tracing the exact locations of the user. A cloaking area of the user
can be extended by including a cloaking area of the drone. A set
of dummy locations can be distributed widely in the network.
This would take more time for the server to infer the exact
location of the user.

V. PERFORMANCE EVALUATION

A. Simulation Testbed

We developed a customized discrete-event driven simulator
using the OMNeT++ [16]. A rectangle network is deployed,
where a set of users is uniformly distributed. Each user is
equipped with an onboard GPS receiver and multiple network
interface cards and communicates with a server and a drone. A
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TABLE I
SIMULATION PARAMETERS

user communicates with its drone wirelessly using a wireless
local area networking, e.g., IEEE 802.11p. The radio trans-
mission range is assumed to be 100 or 150 m. The two-ray
ground propagation channel is assumed with a data rate of
2 Mb/s. We deploy a simple carrier sense multiple access with
collision avoidance based medium access for the link layer. For
the sake of simplicity, we assume that both the user and the
drone have the same communication range and use a symmetric
link. Both the user and the drone can also communicate with the
server directly through an infrastructure network, e.g., a cellular
network. A set of POIs is uniformly distributed in the network,
where the total number of POIs is set to 100 with a single
type. The random waypoint mobility model [43] is deployed
to simulate user mobility (e.g., 1 m/s) without a pause time.
Under the mobility model, the user travels toward a randomly
selected destination in the network. After the user arrives at
the destination, it travels toward another randomly selected
destination. The drone follows a circular mobility model with
a given speed (see Fig. 2). A set of dummy locations (k) is
generated either by a user or a drone. Both a user and a drone
have their local storage to cache the queried results. The cache
size in terms of the number of data items is set to csize and c′size
for a user and a drone, respectively. A set of major simulation
parameters and their values are summarized in Table I.

B. Simulation Results

We measure the performance in terms of the cache hit, number
of cache replacements, number of queries sent to the server, and
size of the convex hull area. We also compare the performance
of the proposed CAC techniques assisted with a drone (WD),
denoted as switched, filtered, and forward, respectively. The
performance without a drone case, denoted as W/O drone, is used
as a performance lower bound. The W/O drone case represents
a traditional k-anonymity based approach in this article. Note
that the cache hit has been widely used as a performance matrix
to measure data accessibility and availability in diverse research
areas. In this article, the primary interest in measuring the cache
hit is not only to measure the accessibility and availability of
queried results but also to see how efficiently the proposed drone-
assisted querying and caching operations and CAC schemes
work. However, the number of queries sent to the server implies

Fig. 4. Cache hit ratio against query intervals for comparing the proposed
cache admission control schemes with or without the assistance of a drone.
Here, the cloaking radius is set to 150 m.

how many queries would be exposed to the server or attacked by
potential adversaries. Although we did not apply any potential
attack to on-flying queries and queried results sent to/from the
server, which is out of our scope, the number of queries sent to
the server indicates the possibility of a location privacy attack.
In [12], [13], and [30], the cache hit can also be used as one of
the major performance matrices to evaluate location privacy.

Cache Hit Ratio: We first measure cache hit by changing
query intervals in Fig. 4. Here, the cloaking radius is set to
150 m. As query interval increases, overall cache hits decrease
in entire CAC schemes. The performance of caching without
a drone shows the lowest cache hit. Since both caches of the
user and the drone can virtually form an aggregate cache, the
caching of the user alone without the help of the drone shows
the lowest performance. The switched scheme shows the highest
cache hit compared to other CAC schemes. Both the user and the
drone take a turn in caching the queried results received from the
server. The cache hit increases because the most recently queried
results can be available in either the user or the drone. The filtered
scheme is to reduce the number of duplicated cached copies in
the user and the drone. After the drone selectively caches the
queried results, it forwards the leftover cached copies to the
user and vice versa. When the user forwards the leftover cached
copies to the drone, however, the drone may lose the recent
queried results for eviction. Thus, the filtered scheme shows
the lowest cache hit among the CAC schemes. In the forward
scheme, the drone stores the queried results evicted from the
user’s cache. Since the evicted data items are the least recently
accessed, the user would less likely access them in a near future.
The cache hit shows the performance between that of switched
and filtered schemes. To clearly see the performance difference,
unless otherwise specified, we compare the performance of
switched and forward schemes in the rest of this article.

Second, we measure the cache hit by changing the cloaking
radii in the forward and switched schemes in Fig. 5. As shown in
Fig. 5(a), when the drone is deployed in querying operation, the
cache hit increases because the cache of the drone plays a role
as an extended cache for the user. The drone also contributes to
the cache hit by generating additional dummy locations where
ultimately more queried results can be cached and used to answer
future queries of the user. In addition, a wider cloaking area
helps the cache hit. Even without the assistance of a drone, the
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Fig. 5. Cache hit ratios against query intervals with different cloaking radii
(100 or 150 m) with (WD) or without (W/O drone) the assistance of a drone.
(a) Forward. (b) Switched.

cache hits increase significantly when the size of the cloaking
area becomes wider (i.e., 150 m). This is because more queried
POIs can be found and cached to the user. In Fig. 5(b), the
cache hit shows a similar performance pattern depending on the
drone assistance and the size of the cloaking radius. However,
the switched scheme shows a higher cache hit than that of the
forward scheme. The switched scheme improves the cache hit
significantly even without the assistance of a drone. Since the
queried results are cached in both user and drone alternately, the
switched scheme can achieve the high cache hit because most
recently queried results can be available in either a user or a
drone.

Third, we analyze the cache hit in terms of local and remote
cache hits in the forward and switched schemes in Fig. 6. As
shown in Fig. 6(a) and (b), the forward scheme has a higher
local cache hit than the remote cache hit. The gap between local
and remote cache hits is clear and larger when the cloaking area
is wider (i.e., 150 m). This is because the drone forwards the
queried results to the user but caches the evicted queried results
forwarded from the user. Thus, the drone caches LRU queried
results and the remote cache hit decreases. In Fig. 6(c) and (d),
the switched scheme shows more remote cache hits than that
of the forward scheme. When the cloaking area is narrow (i.e.,
100 m), the remote cache hit is higher than the local cache hit.
Since the drone has additional dummy locations for querying and
finds more queried POIs located around the user, the user can
use the queried results cached in the drone to answer its queries.
As the cloaking area is wider (i.e., 150 m), the local cache hit
increases. This implies that both local and remote caches are
well utilized.

Fig. 6. Local and remote cache hits in the forward and switched schemes with
different cloaking radii. (a) Forward, 100 m. (b) Forward, 150 m. (c) Switched,
100 m. (d) Switched, 150 m.

Fig. 7. Percentage of cache replacements. Here, the cloaking radius is set to
100 m.

Fourth, we measure the total number of cache replacements
counted in both the user and the drone in Fig. 7. The percentage
is calculated as nrpl(cu)+nrpl(cd)

nqry·k · 100, where nrpl and nqry are the
number of cache replacements in the user or the drone and the
number of queries, respectively. Here, k is set to 9. Since both
caches of the user and the drone are less frequently accessed
as the query interval increases, the cache hit ratio decreases
and the number of cache replacements increases. The switched
scheme shows less number of cache replacements than that of the
forward scheme for entire query intervals. This is because both
the user and the drone frequently forward the queried results and
evicted data items to each other in the forward scheme, resulting
in more number of cache replacements.

Number of Queries Sent to the Server: In Fig. 8, we measure
the number of queries sent to the server in the forward and
switched schemes. When a generated query cannot be answered
by cached results in both the user and the drone, either the user or
the drone sends it to the server with dummy locations. The more
the queries sent to the server, the higher the current location
of the user or drone can be exposed to the server. Thus, it is
critical for the user and the drone not to send as many queries
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Fig. 8. Percentage of queries sent to the server with different cloaking radii
(100 or 150 m) with (WD) or without (W/O drone) the assistance of a drone.
(a) Forward. (b) Switched.

as possible to the server for protecting their location privacy. In
Fig. 8(a), the forward scheme shows high percentages of queries
sent to the server. The percentage decreases when the assistance
of a drone is available and the wider cloaking area is deployed.
Since the drone caches only evicted queried results from the
user, however, a nonnegligible percentage of queries is still sent
to the server. In Fig. 8(b), the switched scheme shows lower
percentages than that of the forward scheme. With the assistance
of a drone and the deployment of a wider cloaking area, the
percentage decreases significantly. Note that either the user or
the drone sends a query to the server only when the queried result
is not available in its cache, which is, in fact, cache miss. In this
article, the percentage of queries sent to the server becomes
cache miss and communication cost. The lower the cache miss,
the better the location privacy and lower communication cost.

Size of Convex Hull Area: Finally, we measure the percentage
of convex hull area in the cloaking area. Although the user
randomly generates a set of dummy locations within a given
cloaking area, the distribution of dummy locations is critical to
obfuscate the server. With the help of a drone, the user is able to
obtain extra dummy locations located outside of the cloaking
area and ultimately extend the cloaking area. The user and
the drone randomly generate k and k′ dummy locations within
their cloaking areas, respectively. Here, k′ = k and total k + k′

dummy locations can be generated. In this article, we analyze
the cloaking area by building a convex hull and measuring the
size of the convex hull area. We use the Graham-Scan based
method [42] to construct a convex hull. The convex hull is
the smallest convex polygon containing a given set of dummy
locations in the network. This convex hull area becomes an

Fig. 9. Percentage of convex hull in the cloaking area(s). Here, the cloaking
radius is set to 150 m.

obfuscated area that confuses the server in predicting the current
location of the user or the drone.

Fig. 9 shows the percentage of convex hull area out of the
cloaking area. The size of the convex hull area is directly propor-
tional to the anonymity, k and k′. As the anonymity increases,
more dummy locations are widely spread out in the cloaking
area, and, thus, the size of the convex hull area increases. With
the assistance of a drone, the percentage increases significantly.

VI. DISCUSSION

A. Drone Feasibility and Capability

In this article, we simplify the drone as a low-altitude UAV
with resource constraints. However, we envision that each user
will be equipped with a personal, light-weighted, and user-
friendly drone just like a smartphone in a near future. There
have been significant research efforts on a portable drone that can
conduct an operation or mission under no or minimized control
of the user in civil and military environments [44]. A micro-
or nano-drone could be integrated with a mobile device (e.g.,
smartphone) so that users can use it quickly at any time/place.
For example, the U.S. Army recently purchased a bulk of
pocket-sized drones, equipped with GPS-guided autopilot, video
recording, and a high-definition camera, to support each soldier’s
surveillance and reconnaissance capabilities [45]. This nano-
drone has been extended to support disaster response as well.
On the commercial side, a personal drone carried by the user
is integrated with the user’s smartphone, called PhoneDrone,
in which the smartphone runs a path planning software and
controls the drone [46]. An autonomous drone activated by a
preprogram or a remote user’s smartphone conducts surveillance
cycles inside the home [47]. Also a tiny quad-propeller drone
equipped with cameras and sensors is designed to embed it into
a smartphone for portability and usability [48]. Thus, we believe
that a drone-assisted approach will be increasingly popular and
deployed in diverse research areas.

B. Drone Mobility

We deploy simple and popular mobility models, random way-
point, and circular mobilities, for the user and drone, respectively
[see Fig. 2(b)]. As the user moves, the cloaking area of the
drone also moves. In this article, the drone generates the dummy
locations as soon as it receives the query. If a real-time constraint
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for query response is not required, the drone can judiciously
delay in generating the dummy locations. For example, the drone
randomly generates a dummy location every second based on the
current location until allk′ dummy locations are generated. Since
the drone location is time-varying, this delaying operation can
exert the same effect in increasing the size of the cloaking area
and distributing the dummy locations in a wider cloaking area.
Thus, the server would be harder to guess the current location
of the user.

A mobility-aware approach or fine-grained mobility manage-
ment can also be applied to the proposed approach. When the
user or drone sends a query attached with its current location
and a set of dummy locations to the server, it caches the queried
results received from the server. Since the query is answered only
by a part of queried results, most queried results are redundant,
but they can be used to answer future queries. With the help
of mobility prediction mechanism [49], the dummy locations
resided along the way where the user moves can be chosen
proactively. The proposed CAC schemes can also be extended
to judiciously cache the queried results that are located along
the predicted path. Thus, more queried results cached are used
to answer future queries and fewer queries are sent to the server.
This would reduce the probability of user location being exposed
to the server.

C. Potential Factor and Use Case

We further exploit the extension in our study and investigate
practical use cases that will lead to interesting research directions
to pursue. Our approach can be deployed in drone-based target
tracking and detection operations [50]. In this mission-oriented
use case, a drone tracks and detects a static or mobile target with-
out exposing its current location and future trajectory and path
to an adversary. When a target is mobile, the drone frequently
sends queries to the server or user to update the whereabouts
of the target. Thus, the drone generates and piggybacks k – 1
dummy locations to the queries to prevent the server or adversary
from finding or guessing its location. Here, the dummy locations
are randomly selected within the single cloaking area positioned
along the trajectory of the drone. Our collaborative k-anonymity
technique can be deployed by considering the dummy locations
generated by both the user and the drone (i.e., k + k′) and
randomly choosing k – 1 out of them. All or a subset of k –
1 dummy locations can be cached for later use.

A rapidly emerging drone-enabled small-cell network [51],
[52] is also considered, where a set of drones covers a small-sized
area and plays a role as a small-cell or mobile base station.
The drones cache popular content to support the capacity of
wireless backhauls and reply back to users directly to reduce the
query latency. One of the major issues in small-cell networks
is how to efficiently divide and cache the popular content at
the small-cell base station and drones in a distributed manner.
In light of these, our proposed CAC schemes and aggregating
caching can be applied by deciding whether to cache the queried
results or not at the base station and drones. The drones try not to
cache duplicated cached copies to improve the data accessibility
and availability.

VII. CONCLUSION

In this article, we investigated spatial querying with the help of
a drone to protect the location privacy of users from the server.
Three implicit assumptions and major issues have been iden-
tified often witnessed and overlooked in prior LBS literature.
We proposed a drone-assisted querying and its corresponding
operations for both the user and the drone to collaboratively hide
the current location of the user from the server by extending the
cloaking areas and increasing the number of dummy locations.
Three CACs techniques are also proposed to efficiently store the
queried results in the storage of user and/or drone by minimizing
the duplicated cached copies. We analyzed the drone-assisted
location privacy in terms of the location obfuscation and the
size of the cloaking area. We conducted extensive simulation-
based experiments and performance comparisons by changing
key parameters. The simulation results show that the proposed
approach can increase cache hit and improve location privacy
significantly by reducing the number of queries sent to the server.

Unlike prior prejudice on the drone, such as incurring privacy
attacks, the proposed approach showed a potential possibility
for the drone to assist privacy-preserving spatial querying. Our
research will pave a new research direction in protecting the
location privacy of users using a drone in the LBS.
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