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Commercially well-known drones, unmanned aerial vehicles (UAVs), are increasingly popular with the 
public and have been widely deployed in diverse applications. However, a drone equipped with tracking, 
monitoring, or sensing device(s) can illegally collect privacy- and security-sensitive information and 
intrude restricted areas. Thus, recent literature focuses on the protection of users and restricted areas 
from an unwanted privacy attack and intrusion caused by the drone. Unlike prior research, however, we 
fundamentally shift the privacy paradigm from protecting users and restricted areas from a malicious 
drone into protecting and hiding the sensitive information of a drone from an adversary. In light of 
these, we propose three privacy-preserving target tracking strategies based on the shortest path, random 
locations, and dummy locations. The basic idea is to obfuscate the current location of the drone and 
randomize the trajectory to prevent the adversary from locating and tracking the drone. We also analyze 
drone privacy in terms of location and trajectory and measure them through entropy-based anonymity, 
the size of convex-hull, and the number of paths. We conduct extensive simulation experiments using 
the OMNeT++ for performance evaluation and comparison with stationary and moving target tracking 
scenarios under three mobility models. The simulation results indicate that the proposed strategies can 
be a viable approach to track the target while reserving a certain level of location and trajectory privacy.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Commercially well-known drones, unmanned aerial vehicles 
(UAVs), are increasingly popular to the public because of their 
versatility, easy installation and interface, and relatively low op-
erating cost. Drones are being evolved to be smaller, lightweight, 
low-altitude navigated, and user-friendly because of recent techno-
logical advances in embedded computing and high-speed wireless 
networking. Diverse drone-based applications have been developed 
in military and civilian environments. For example, reconnaissance 
and surveillance, post-disaster search and rescue, extending ad hoc 
networks, an aerial inspection of industrial infrastructures, freight 
and package delivery services, deterring birds from entering the 
airspace around airports, and so on [1]. The federal aviation admin-
istration (FAA) has more than 0.8 million commercial and recre-
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ational drones registered with the organizations in 2020 [2]. The 
business market for commercial drones is expected to grow by $13 
billion by 2025 [3]. As drones rapidly become ubiquitous, however, 
it is not surprising to frequently witness them flying over private 
properties, restricted areas, or cyber-critical infrastructures. Drones 
equipped with a camera, sensor, or radar can easily track, monitor, 
sense objects and areas, and illegally collect privacy- and security-
sensitive information. In light of these, recent research efforts [4–8]
have been devoted to the protection and prevention of users from 
an unwanted privacy attack and the expulsion of drones from en-
tering the restricted area.

Unlike prior literature, we raise a novel issue on privacy in con-
ducting drone-based target tracking operations in this paper. Our 
research goal is for a drone to successfully complete a given tar-
get tracking mission without exposing its location, trajectory, and 
path information to an adversary. For example, if the drone follows 
a simple path (e.g., shortest path) towards a target, the adversary 
could collude with the target, locate the drone, predict a future 
trajectory, and identify a path, and take a counteraction in ad-
vance. Since the location and trajectory information of the drone 
is critical in target tracking operations, the drone should keep this 
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information secret and should not share them with anyone except 
the trusted one. To the best of our knowledge, our proposed ap-
proach is the first in exploring the privacy of drone itself in the 
realm of UAV research. Our contributions are summarized in three-
fold:

• We first fundamentally shift a privacy paradigm of drone from 
protecting users and restricted areas from a malicious drone 
into protecting and hiding sensitive information of the drone 
from an adversary.

• Three privacy-preserving target tracking strategies are pro-
posed based on the shortest path, random location, and 
dummy location. The basic idea is to obfuscate the current lo-
cation of the drone and randomize the path towards the target 
to prevent the adversary and target from locating and track-
ing the drone. We also enhance the strategies by varying the 
method in selecting a set of dummy locations.

• The privacy of drone is analyzed in terms of two aspects: lo-
cation and trajectory. We deploy an entropy-based metric to 
quantify the degree of anonymity for the location privacy of 
drone. We also consider a convex hull area and the number of 
paths to measure the trajectory privacy of drone.

In this paper, we develop a customized discrete-event driven 
simulator using the OMNeT++ [9]. We extensively conduct the 
performance evaluation and comparison of three target tracking 
strategies in terms of entropy-based anonymity, the size of con-
vex hull area, the number of paths, drone traces, detection delay, 
and the average number of packets exchanged with the server. We 
consider both stationary and mobile targets with three mobility 
scenarios: linear, circular, and random waypoint. The simulation 
results show that the proposed target tracking strategies can pre-
serve the location and trajectory privacy of drone and be a viable 
approach.

The rest of this paper is organized as follows. Prior literature 
is reviewed in Section 2. We investigate and analyze privacy-
preserving target tracking strategies in Section 3. The proposed 
strategies are extensively evaluated and discussed in Sections 4
and 5, respectively. The concluding remarks are presented in Sec-
tion 6.

2. Related work

Privacy-preserving research has been extensively studied in var-
ious wireless and/or mobile networks. For example, in mobile ad 
hoc networks (MANETs), due to their inherent resource constraints 
and lack of centralized access control, each node periodically 
broadcasts a beacon message at least containing its identification 
and location to advertise its presence for peer-to-peer communi-
cation [10]. An adversary can capture on-flying messages and track 
and learn the traces of mobile nodes’ location. To avoid the loca-
tion privacy revealed, several privacy-preserving routing algorithms 
are proposed to protect both sender and receiver from leaking their 
location privacy [11,12]. Privacy-enhancing techniques including 
anonymity sets, multiple routes, hiding routing control messages, 
etc. are embedded into routing algorithms so that the adversary 
can be confused to locate the exact source and destination. In mo-
bile social networks (MSNs), users can communicate and share pri-
vate information and data with others flexibly through one-to-one, 
one-to-many, and many-to-many ways. To prevent the adversary 
from stealing private social data, diverse privacy-preserving strate-
gies are investigated primarily targeting location-based services, 
social routing, social profile, and social morality, social health, and 
service-oriented sociality [13]. In this section, we analyze major 
privacy-preserving research activities of users and drones and fo-
cus on their location privacy.
2

Drone path planning: Diverse path planning strategies have been 
widely investigated. The primary goal of path planning is to find an 
optimal path or good quality of route that satisfies desired perfor-
mance objectives, such as maximum traversability and safety, min-
imum cost, or shortest navigating time and route. A simple short-
est path and its numerous variants have been proposed to drive 
the minimum target cost, using A search, heuristic approach, or 
Dijkstra’s algorithm [14,15]. Path planning can be classified based 
on how environmental information is utilized to compute an op-
timal path: (i) Global path planning and (ii) Local path planning 
[16]. Global path planning uses a global geographical map to find 
an optimal path. Both heuristic searching methods and intelligent 
algorithms are deployed [17–19]. When a sudden obstacle appears 
or an unexpected event occurs, the local path planning constantly 
collects the sensed information from the surrounding environment 
and adjusts the current optimal path using an evolutionary algo-
rithm or machine learning techniques [20,21].

Drone-based target tracking: A drone or a group of drones 
equipped with a camera or sensor monitors the environment, com-
municates with a base or other drones, and detects an object or 
event that occurred on the ground. Most approaches [22–24] fo-
cus on how to efficiently extract meaningful information from the 
surrounding scenes and improve the quality of object detection 
using computer vision algorithms or deep learning techniques. 
Since a recent vision camera is light-weight, high-resolution, and 
cost-efficient, processing and analyzing a series of incoming high-
resolution images from a flying drone in a real-time manner be-
come critical under potential obstacles, such as multiple objects or 
environmental uncertainties.

Privacy-attacking and preserving drone: Each drone equipped 
with a camera, sensor, or radar is capable of conducting a pri-
vacy attack by tracking, monitoring, and sensing an object or event 
to illegally collect privacy- and security-sensitive information in 
personal properties, restricted areas, or cyber-critical infrastruc-
tures. Recent approaches [5–8] focus on the protection of users 
and restricted areas from unwanted intrusion and attack caused 
by a drone. In [8], both drone’s altitude and its attached equip-
ment capability are regulated and limited to reduce a privacy 
attack. In [25], the fifth generation (5G) enabled drones to de-
ploy a blockchain-based consensus technique to protect data and 
trajectory privacy from a malicious drone. The malicious drone 
may conduct misbehavior by disrupting a drone network and in-
tercepting data transmissions between legitimate drones. Recent 
privacy-preserving approaches [26,27] are also not to intrude on 
any privacy-sensitive area. In [26], multiple drones cover an area, 
where the area is virtually divided into a set of square-shaped 
public and private sub-areas. Each drone generates a graph for nav-
igation not to intrude private sub-areas by considering both plan 
and elevation views and flies through the center of squares in a 
straight-line based. In [27], a path planning algorithm is proposed 
for the drone not only to cover a given target area without violat-
ing privacy-sensitive areas but to minimize total navigation time. 
Note that the drone is still considered as an object that could in-
trude and attack users and security-sensitive areas.

Preserving user’s location privacy: When a user requests a location-
based service (LBS) in an infrastructure-based network, it sends 
a spatial query piggybacked with its current location to an LBS 
server. In this querying, it is implicitly assumed that the user 
has agreed to share its location with the server without know-
ing whether the server could fully be trusted or not. To protect 
the location privacy of users from an untrusted server, diverse 
techniques including location perturbation, obfuscation, anonymity, 
and their variants have been deployed [28,29]. The basic idea is 
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that a set of real or dummy locations including a query issuing 
user and its adjacent neighbors is sent to the server as a part of 
query parameters to hide the exact location of the user from the 
server [30,31]. To achieve a k-anonymity, a queried location is of-
ten geographically enlarged into a cloaking region to encompass at 
least k − 1 adjacent neighbors or dummy locations. However, the 
k-anonymity may require extra computation and reduce the ac-
curacy of query results replied from the server [32,33]. A virtual 
circle or square shape of cloaking region can be created to include 
the locations of user and k − 1 dummies [32].

User location tracking: Whenever users access an infrastructure-
based network, they randomly generate a valid, unlinkable, and 
short-term lived medium access control (MAC) address1 to avoid 
their locations from being tracked by an adversary [34]. To mitigate 
locations being tracked, users update their ids in a specific period 
(e.g., when changing a velocity or direction) or location (e.g., when 
arriving at an intersection or pre-determined area) to reduce the 
adversary’s ability to continuously infer and track their locations 
[35]. Users can even keep quiet for a random period before up-
dating their ids to confuse the adversary [36]. In [37], users can 
opportunistically exchange their ids with the adjacent neighbors 
to increase the k-anonymity.

In summary, extensive research efforts have been devoted to 
drones and their diverse applications over the past decades, but 
drones have not been considered as an object whose location pri-
vacy should be protected. To the best of our knowledge, this is the 
first attempt to explore the location privacy of the drone for tar-
get tracking in the realm of UAV research. This research is also to 
shift a privacy paradigm of the drone from protecting users and 
security-sensitive areas/facilities from an intruding drone into pro-
tecting the location privacy of drone from a stationary or mobile 
adversary.

3. Privacy-preserving target tracking strategies

We shift the paradigm of privacy on drones from protecting the 
privacy of users from an intruding drone to protecting the loca-
tion privacy of drones from an adversary. The primary goal of our 
approach is for a drone to complete a mission by tracking and de-
tecting a target without exposing its current location and future 
trajectory to an adversary. In the following, we present system and 
adversarial models, propose three target tracking strategies with 
stationary and moving target scenarios, and analyze the privacy of 
drones in terms of location and trajectory.

3.1. System and adversarial models

A user2 controls a drone3 via a wireless local area network 
(e.g., IEEE 802.11) in a base, where the drone is launched and 
landed back after completing a mission. The user also communi-
cates with a server through the fourth-generation (4G) wide area 
wireless networks (e.g., LTE). Thus, the user can communicate with 
the server and drone simultaneously. The drone is equipped with 
multiple network interface cards (e.g., IEEE 802.11 and LTE) and an 

1 Each user can be uniquely identified by a 48-bit long MAC address that is inher-
ently burned into its carrying device under the IEEE 802 standard. Here, the MAC 
address is used as a user identifier (id) as well.

2 In this paper, we use a user to refer to a person who carries and controls a 
wireless/mobile device or a drone wirelessly.

3 In general, both terms, UAV and drone, are used interchangeably. For clarity, we 
use the term, drone, for general users to easily install, deploy, and control it in their 
applications in this paper. Unlike UAV, drones are often characterized by small-size, 
lightweight, low-altitude navigation, and user-friendliness.
3

Fig. 1. (a) A user marked as a black circle communicates with a drone directly or 
indirectly through a server. The communication ranges of the user and drone are 
marked as a dotted line circle. A solid line indicates a mobility; and (b) An adversary 
and a target are marked as a red circle and a star, respectively. The adversary can 
overhear ongoing communications and collude with the target.

onboard geographical position system (GPS). The drone can also 
be attached with any device for detection depending on a given 
mission, such as a camera, sensor, or radar. Here, each device 
has a different detection range. Due to the inherent resource con-
straints, however, the drone has limited computing power, memory 
storage, and battery power. The drone periodically or on-demand 
basis reports the current location/status to the user and follows 
the command issued by the user. The drone can be affected by 
weather (e.g., wind) and may not correctly navigate to the location 
requested by the user. The server is accessible by both user and 
drone directly through the 4G wireless networks.

A target can be a static or mobile object (or point-of-interest). 
A static object is stationary and never changes or does not change 
its location in a short period. A mobile object refers to a moving 
object and its location is time-varying, such as a pedestrian, vehi-
cle, or drone. In this paper, the target is considered to be detected 
if it is located within a detection range of a drone. As shown in 
Subfig. 1(a), a user communicates with a drone directly if they are 
located within their communication ranges. If the drone is far away 
from the user and becomes out of sight, both user and drone can 
still communicate together through a server indirectly. The server 
is located between the user and drone, relays their communica-
tion, and answers a query generated by the user or drone. Due 
to the recent development of tracking technologies, e.g., a satel-
lite video technique [38], the server is able to locate the target and 
provide both user and drone with an approximated location of the 
target. Here, the technologies often suffer from their inherent con-
straints, such as inaccurate satellite video cameras, video filtering 
algorithms, or GPS error bounds.

An adversary is to attack our target tracking operation by inter-
fering with network protocols or intercepting on-fly communica-
tions. Unlike a drone, the adversary is assumed to stay in an active 
mode for an extended period without resource constraints. The ad-
versary is able to compromise a server to behave maliciously. Then 
the malicious server may selectively or strategically forward the 
current location of the drone to the adversary. Both target and ad-
versary could collude together to avoid being tracked by the drone. 
In Subfig. 1(b), the adversary might eavesdrop on an on-flying 
packet and inject false information or modify the packet header 
information to mislead both the user and drone. However, if the 
user authenticates an incoming packet with a lightweight digital 
signature [39], it can verify and detect any modification. In this 
paper, we consider a target tracking operation and its potential ad-
versarial scenarios that cannot be detected by digital signature and 
cryptographic techniques. We do not consider cryptographic prim-
itives.
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3.2. Target tracking strategies

In this paper, we use the term path as a spatial construct for 
the drone to reach from the user to the target. Since the drone 
flies through a set of designated locations as an intermediate des-
tination to detect the target, we use the term trajectory to refer to 
a movement from an intermediate location to the next along the 
path. Here, a path consists of several trajectories.

Shortest path-based tracking: To locate and track the target effi-
ciently, it is essential for the user, server, and drone to communi-
cate and collaborate seamlessly. With the current location of the 
target provided by the server, the drone can observe and track the 
target to quickly respond and take an action for the event that oc-
curred in the ground under the guidance of user.

We propose a simple tracking approach based on the shortest 
path between drone and target. When a user launches a drone to 
track a target, it sends a query to a server for the whereabouts of 
the target. The server replies an approximated location of the tar-
get (xt , yt ) to the user using tracking technologies. Upon receiving 
the reply, the user uploads the location to the drone and launches 
it. The drone can calculate a straight line with a slope, y = yt−yd

xt−xd
x

where (xd, yd) is the current location of the drone. The drone flies 
towards the target by following the line. Since the line is consid-
ered as the shortest path between the drone and target, the drone 
can detect the target quickly. If the target is stationary or does not 
move in a short period, however, the path can easily be predictable 
by an adversary. Since the adversary could collude with the server, 
the target may take an action in advance to avoid being tracked. 
Here, we define a detection delay as an elapsed time measured 
from when a drone is launched to when a target is detected.

While the drone is flying towards the target, it periodically 
sends additional queries to the server for any update of the target 
location. Upon receiving the queries, the server replies the updated 
target locations to both user and drone. Since the server might be 
compromised by an adversary and show misbehavior by replying 
a false target location, the user should be updated to monitor the 
responses of the server and track the target. The user should also 
monitor the current location of the drone to check the process of 
target tracking. Thus, the drone includes its current location in the 
query and sends it to the server. To avoid the drone from being 
exposed its exact location to the server and adversary, unless oth-
erwise specified, we deploy a location obfuscation scheme [32,33]
in this paper. To achieve k-anonymity, the drone sends the query 
additionally piggybacked with k − 1 dummy locations.

Random location-based tracking: The shortest path based track-
ing approach can provide the lowest detection delay but the future 
trajectory of the drone can be predictable by an adversary. This is 
because the drone follows a simple and linear path to the target. 
To avoid the trajectory of the drone being predicted, we propose a 
random location-based tracking approach. The basic idea is to ran-
domize the trajectory to confuse the adversary while reducing the 
detection delay of the target. The drone virtually builds a rectan-
gle with a diagonal starting from its current location to the target. 
Then the drone randomly generates a location as an intermedi-
ate destination. The random location should be positioned within 
the overlapped areas of the rectangle and detection range to en-
force the drone flying towards the target. This approach guides the 
drone not to deviate too much from the path that may increase 
the detection delay of the target.

In Fig. 2, when the drone receives the location of the target 
from the server, it builds a virtual rectangle, generates a random 
location as an intermediate destination (e.g., d′), and flies towards 
the destination. Upon arriving at the destination, the drone sends 
a query to the server for any update of the target location. As 
4

Fig. 2. A random location-based target tracking approach, where the rectangles are 
marked as a dashed-dot line and are virtually built with a diagonal starting from the 
current location of the drone to the target location. A randomly generated location, 
marked as a green circle, is used as an intermediate destination (e.g., d′ and d′′). 
When a drone arrives at an intermediate destination, it builds a new rectangle and 
generates a random location as the target moves.

Fig. 3. A dummy location-based target tracking approach, where intermediate des-
tinations (e.g., d′ and d′′) are marked as a green circle. A set of dummy locations 
marked as a blue solid circle is generated and distributed within a cloaking area, 
which is marked as a blue dashed-dot line.

the target moves, the drone builds a new virtual rectangle based 
on the current location of the target. Then the drone generates a 
random location as another intermediate destination (e.g., d′′) and 
flies towards the destination. The drone repeats this procedure un-
til it detects the target. If the y-axes of drone and target are the 
same, the virtual rectangle becomes a vertical line. The drone ran-
domly chooses the location positioned along the line overlapped 
with the detection range of drone.

Dummy location-based tracking: Although the random location-
based tracking approach produces a limited randomized path, if 
the size of detection range is small, the drone needs to send 
queries to the server frequently for any update of target location 
whenever it arrives at intermediate destinations. Both the number 
of queries sent to the server and the total length of path depend 
on the size of the drone’s detection radius. If the detection radius 
increases, fewer intermediate destinations are created but can re-
duce the path randomization. This is because the distance between 
intermediate destinations increases and intermediate trajectories 
become simple and linear.

To balance the number of queries and path randomization, we 
propose a dummy location-based approach. The basic idea is to 
send a fewer number of queries to the server but to randomize 
the path more to the target. This approach can reduce the prob-
ability of a drone and its future trajectory being detected by an 
adversary. A user initially generates an intermediate destination 
along the path (e.g., d′) to the target and uploads it to a drone 
before launching as shown in Fig. 3. The intermediate destination 
is positioned at the boundary of detection range to reduce the de-
tection delay. Then the drone generates a set of dummy locations 
(e.g., k = 5) that are randomly distributed within its cloaking area. 
In this paper, we set the size of the cloaking area to a circle with 
a diameter that is the distance between the current location of 
the drone and the next intermediate destination. The drone flies 
towards the next intermediate destination through the dummy lo-
cations. When the drone arrives at the destination, it contacts the 
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Fig. 4. A pseudo code of dummy location-based tracking operations.

server for any update of the target location, generates another k 
dummy locations, and flies towards the next generated intermedi-
ate destination (e.g., d′′) through the dummy locations. The drone 
repeats this procedure until it detects the target.

We enhance the proposed approach by varying the method in 
selecting dummy locations. In this paper, k is a system parame-
ter and directly impacts the balance between the path random-
ization and detection delay. For example, if k increases, the path 
is more randomized but the detection delay increases simultane-
ously. To maintain a certain level of path randomization but reduce 
the detection delay, a subset of k dummy locations (e.g., k′ = 3) is 
randomly selected, where k′ ≤ k. This method can reduce the de-
tection delay and confuse an adversary in predicting the trajectory 
of the drone as well. To further reduce the detection delay, the 
next dummy location selected from the current dummy location 
should be located closer to the target as shown in Fig. 3. This can 
prevent the drone from flying back to the target and increasing the 
detection delay. A set of major target tracking operations is sum-
marized in Fig. 4.

3.3. Analysis of drone privacy

Location privacy: When a drone arrives at an intermediate desti-
nation, it sends a query piggybacked with its current location to 
the server. Upon receiving the query reply from the server, the 
drone updates the target location and reports its current location 
to the user. Since the query might be intercepted or overheard ei-
ther by the server or adversary, the current and future locations 
of the drone can be exposed and predicted. In light of this, we 
use dummy locations to protect the location privacy of drones and 
achieve k-anonymity. To quantify the location privacy of drones, 
we deploy an entropybased metric [40] in which entropy has been 
widely used to measure the degree of anonymity in diverse re-
search areas.

First, we follow the procedure of cell-based entropy [41]. We 
virtually divide a network area into a set of cells with equal size, 
n ×n cells. Each cell (c) has a probability of being queried based on 
the history of queries. A query probability in a cell ci(pci ) can be 
expressed as nci∑n2

nc

, where nci is the number of queries gener-

j=1 j

5

ated in ci . Here, 
∑n2

i=1 pci = 1. When the drone arrives at the first 
intermediate destination at time t, it sends a query to the server 
with k locations (i.e., cells) that include the real location of the 
drone and k − 1 dummy locations, Lt = {l1, l2, . . . , lk}. A probabil-
ity that the ith location is the real location of the drone can be 
expressed as, pt = pci∑k

j=1 pc j

.

Second, we also follow the procedure of transition-based en-
tropy [41]. We consider the number of intermediate destinations 
(nd), where the drone sends a new query containing dummy lo-
cations to the server. Before detecting the target, the drone sends 
multiple queries to the server. Suppose the drone arrives at the 
second intermediate destination at time t + � and sends a query 
to the server with another set of k locations, including the real lo-
cation of drone and k − 1 dummy locations, Lt+� = {l′1, l′2, . . . , l′k}. 
Given the probability that ith location is the real location of the 
drone in Lt , a probability that one of k locations in Lt+� is the 
real location of the drone, pt+� , can be expressed as,

pt+� =
k∑

x=1

Pr(lx → l′y|lx = li) · Pr(lx = li). (1)

Here, lx ∈ Lt and l′y ∈ Lt+� . In Eq. (1), Pr(lx → l′y|lx = li) can be 
calculated as, nx→y∑k

y=1 nx→y
, where nx→y is the number of movements 

from lx to l′y at t + �. Pr(lx = li) is pt and can be calculated as, 
pci∑k

i=1 pci

. Based on [40], the entropy (E) can finally be expressed as,

E = −
k∑

y=1

pt+� · log2(pt+�). (2)

Note that we consider this entropy as uncertainty in determin-
ing the real location of drones from potential candidates including 
dummy locations.

Trajectory privacy: When a drone flies towards the target, its tra-
jectory can be exposed and predicted by an adversary. To protect 
the trajectory privacy, we randomize the trajectory using dummy 
locations until the drone detects the target. In this paper, we con-
sider a convex hull and the number of paths to quantify the tra-
jectory privacy of drones.

First, we deploy a convex hull algorithm to approximate an area 
where the drone flies. A convex hull is defined as the smallest con-
vex polygon containing a given set of points in a two-dimensional 
area. To construct a convex hull, we use the Graham-Scan based 
method [42] and adapt it into our context, consisting of four major 
operations. (i) We randomly generate k dummy locations within a 
cloaking area (see Fig. 3). (ii) We initially choose a location with 
the minimum x- and y-coordinates and sort the rest of the loca-
tions based on the angle to the location in counterclockwise order. 
(iii) Then the initially chosen location is connected with a location 
with the minimum angle. (iv) We incrementally keep connecting 
the locations only if they are located to the counterclockwise of 
the line connecting the previous two locations. Finally, this con-
vex hull becomes an area where the drone flies and confuses the 
adversary in predicting the trajectory. The bigger the size of the 
convex hull is, the harder the adversary predicts the trajectory. 
Note that the size of the convex hull is directly proportional to the 
cloaking area, where dummy locations are distributed. If dummy 
locations are widely spread out in the area, the size of the convex 
hull increases but the detection delay also increases.

Suppose there is the number of intermediate destinations (nd) 
between the base and target. The drone constructs a convex hull 
(ci ) when it flies towards the ith intermediate destination. The to-
tal area of the convex hull is the summation of the convex hull 



S. Chinthi-Reddy, S. Lim, G. Choi et al. Vehicular Communications 35 (2022) 100459
Fig. 5. A convex hull depicted as a polygon marked by a red-dashed line is created 
using dummy locations. Here, k and nr are set to 7 and 5, respectively. A set of 
dummy locations is marked as a blue solid circle.

generated at each intermediate destination and can be expressed 
as, ns = ∑nd

i=1 ci . However, the size of the cloaking area depends on 
the number of intermediate destinations. As the number of inter-
mediate destinations increases implying that the distance between 
intermediate destinations decreases, the size of the cloaking area 
decreases. This can impact the size of the convex hull. Thus, we 
measure the average percentage of areas covered by convex hull 
out of entire cloaking areas,

ns(%) =
∑nd

i=1
ci

πγ 2
i

nd + 1
× 100, (3)

where γi is the radius of the cloaking area located between 
(i − 1)th and ith intermediate destinations. The 0th intermediate 
destination is the base. In Fig. 5, we show a convex hull consisting 
of dummy locations. As depicted, the convex hull is a polygon con-
necting the smallest number of dummy locations, i.e., connecting 
five dummy locations out of seven. In this paper, we measure the 
percentage of convex hull area out of the cloaking area for perfor-
mance evaluation (see Fig. 11).

Second, we count the number of paths that the drone can po-
tentially use until detecting the target. When the drone flies to-
wards an intermediate destination, it generates dummy locations, 
produces a set of paths by connecting the locations, and randomly 
selects one of the paths for traverse (see Fig. 3). The adversary 
may predict the location of intermediate destination but it would 
be hard to predict the trajectory traversed by the drone. Note that 
since the drone uses dummy locations to protect its location pri-
vacy at each intermediate destination, the adversary would also 
be hard to predict the location of intermediate destination. For 
the purpose of comparison, the adversary may easily predict a 
trajectory produced by the proposed shortest path-based tracking 
approach because the drone uses a single path until detecting the 
target for the entire flight.

Suppose there is a set of intermediate destinations (nd) be-
tween the base and target. The drone generates ki dummy lo-
cations when it flies towards the ith intermediate destination. If 
each path includes all dummy locations without any duplicated lo-
cation, the total number of paths is the concatenation of all the 
trajectories generated at each intermediate destination and can be 
expressed as,

np =
nd+1∏
i=1

ki !, (4)

In addition, we can even produce more paths by changing the 
number of dummy locations involved. For example, if each path 
can include at least one dummy location, the total number of paths 
can be calculated as,

n′
p =

nd+1∏ (
k∑ k!

(k − nr)!

)
. (5)
i=1 nr=1

6

4. Performance evaluation

We evaluate and compare the performance of proposed target 
tracking strategies with both static and mobile target scenarios by 
changing key simulation parameters.

4.1. Simulation testbed

We develop a customized discrete-event driven simulator using 
the OMNeT++ [9] and conduct extensive experiments on a Win-
dows 10 machine with a 1.6 GHz Intel i5 processor and 8 GB 
RAM. A rectangular network (e.g., 1,000 × 1,000 m2) is deployed, 
where three main objects including user, drone, and target are lo-
cated. A user equipped with an onboard GPS receiver and multiple 
network interface cards (e.g., IEEE 802.11 and LTE) communicates 
with a server and a drone simultaneously. We set the detection 
range of the drone to 150 m but it may vary depending on the 
attached devices and sensors, such as camera, lidar, or radar. The 
two-ray ground propagation channel is assumed with a data rate 
of 2 Mbps. We deploy a simple CSMA/CA-based medium access 
for the link layer. The user communicates with the drone directly 
if they are located within their communication ranges. When the 
drone flies out of the user’s communication range, the user can 
still communicate with it indirectly through the server. For the 
sake of simplicity, we assume that both user and drone have the 
same communication range (e.g., 150 m) and use a symmetric link. 
Both user and drone communicate with the server directly through 
the 4G wireless networks.

The user stays in a base where the drone is launched. The drone 
flies through a set of destinations assigned by the user and detects 
a target. A stationary target is randomly located in the network. A 
mobile target moves by following a mobility model: linear, circu-
lar, and random waypoint. Initially, the user and target are located 
at the leftmost bottom and rightmost up in the network respec-
tively. To clearly observe the trace of drone for target tracking, the 
velocities of drone and mobile target are set to relatively low, 1 
m/sec. The drone generates the number of intermediate destina-
tions (nd , 3 to 10) along the path. The drone also generates a set 
of dummy locations (nr , 3 to 12) within the cloaking area. A value 
of anonymity (k) ranges from 3 to 15.

4.2. Simulation result

We measure the performance of the proposed target tracking 
strategies in terms of entropy-based anonymity, the size of the 
convex hull, the number of paths, drone traces, detection delay, 
and the number of packets exchanged with the server. We compare 
the performance of our strategies with stationary and mobile tar-
get scenarios. Here, the proposed shortest path-, random location-, 
and dummy location-based target tracking strategies are denoted 
as SPT, RLT, and DLT respectively. The SPT can be used as a perfor-
mance lower bound.

Snapshot of drone trace: We snapshot a set of drone traces to ob-
serve the changes of trajectories towards a stationary or mobile 
target in Fig. 6. Given a stationary target, the SPT builds a path 
from the base to the target as shown in Subfig. 6(a). The drone 
flies along the path without visiting any intermediate destination. 
Since the path is a straight line to the target, an adversary can 
easily predict the future trajectory of the drone. In the RLT, how-
ever, the drone flies towards randomly generated locations along 
the path to the target. Each random location is generated within 
the overlapped regions of the virtually built rectangle and the de-
tection range of the drone. The path is a little randomized but the 
trajectory between random locations is still straight. In the DLT, the 
drone not only visits a set of intermediate destinations but also 



S. Chinthi-Reddy, S. Lim, G. Choi et al. Vehicular Communications 35 (2022) 100459
Fig. 6. Snapshots of drone traces for stationary and mobile targets. A mobile target 
follows circular mobility and moves from a starting position to ending positions.

flies through a set of dummy locations between the intermediate 
destinations, where nd and nr are 10 and 3, respectively. The path 
can be randomized by changing the number of dummy locations.

In Subfig. 6(b), a mobile target follows a circular mobility 
model. The SPT still builds a simple path based on the last up-
dated location of the target. Both RLT and DLT show that the paths 
are adaptively changed while the target is moving. This is because 
whenever the drone arrives at the intermediate destination, it con-
tacts the server, updates the current location of the target, and 
rebuilds a trajectory towards the target.

Dummy location vs. intermediate destination: In Fig. 7, we in-
vestigate the impact of the number of dummy locations (nr ) and 
intermediate destinations (nd) on the path towards the target and 
draw the traces of the drone. In the DLT, we can observe a set 
of randomized paths by changing nr and nd from 5 to 12 and 
from 5 to 10, respectively. In Subfig. 7(a), the drone should go 
through randomly generated dummy locations (i.e., nr = 5) be-
tween two adjacent intermediate destinations (i.e., nd = 5). The 
drone flies in a zig-zag manner for the entire path compared to 
a straight line under the SPT (see Subfig. 6(a)). As nr increases, 
more zigzag patterns are observed in Subfigs. 7(b) and (c). As nd
increases, the distance between intermediate locations decreases. 
This will decrease the size of the cloaking area located between 
intermediate destinations. In Subfigs. 7(d) to (f), as nr increases, 
more dummy locations are generated within a smaller cloaking 
area. Thus, the drone flies through the trajectories showing more 
short and narrow-width zig-zag patterns.
7

The DLT can enhance the randomization of the path by flex-
ibly selecting the number of dummy locations located between 
intermediate destinations. In Fig. 8, we show a snapshot of the 
randomized path including intermediate destinations and dummy 
locations. In each trajectory, the drone can choose a different num-
ber of dummy locations. For example, the drone selects one to four 
dummy locations out of five in each trajectory and confuses the 
adversary.

Drone trace of mobile target: As depicted in Fig. 9, we trace the 
path of the drone using the DLT in the presence of a mobile target 
to see whether the path can adaptively be changed. Here, the tar-
get moves under one of three mobility models: linear, circular, and 
random waypoint. The number of intermediate destinations and 
dummy locations is set to three and five respectively for entire 
traces. Under random waypoint mobility, the target moves towards 
a randomly selected destination in the network. After the target ar-
rives at the destination, it stays for a pause time (e.g., rest period). 
When the pause time expires, the target moves towards another 
randomly selected destination. The target follows the procedure 
repetitively. In this paper, the pause time is set to zero implying 
that the target always moves in the network.

The drone follows adaptive trajectories and flies towards the 
moving target as shown in Subfigs. 9(a) to (c). Here, nd and nr
are initially set to three and five, respectively. As the drone flies 
and becomes closer to the target, the distance between intermedi-
ate destinations decreases. As the target shows a dynamic move-
ment by following either circular or random waypoint mobility, 
the drone follows adaptive trajectories and detects the moving tar-
get. In Subfigs. 9(d) to (f), we show another set of traces, where 
nd and nr are set to 10 and five, respectively. With higher nd , the 
traces have more short and narrow-width zig-zag patterns com-
pared to the traces shown in Subfigs. 9(a) to (c). Since the distance 
between intermediate destinations decreases, the same dummy lo-
cations are located in a smaller cloaking area. Even though each 
trajectory is randomized, it is similar to a straight line.

Location and trajectory privacy: In Fig. 10, we measure the en-
tropy to quantify the location privacy of drones for static and 
mobile targets by changing k. When the drone arrives at an in-
termediate destination, it generates a set of dummy locations to 
hide the current location from the server and adversary. As k in-
creases, the entropy increases gradually in both static and mobile 
target scenarios as shown in Subfigs. 10(a) and (b), respectively. 
We compare the measured entropy with the optimal entropy that 
can be achieved when each query probability in all k locations 
is the same. In Subfig. 10(a), as nd increases, the entropy also 
increases because more intermediate destinations can positively af-
fect the randomness of the path. In Subfig. 10(b), when the target 
moves, the entropy closer to the optimal is observed compared to 
that of the stationary target regardless of the mobility models of 
the target.

We also measure the percentage of the convex hull out of the 
cloaking area located between intermediate destinations for sta-
tionary and mobile targets by changing nd and nr as shown in 
Fig. 11. As nr increases, the dummy locations tend to spread widely 
within the cloaking area. Thus, the percentage of the convex hull 
increases for entire mobility models. As nd increases, however, the 
percentage of the convex hull does not increase significantly in 
Subfigs. 11(a) and (b). This is because as nd increases, the dis-
tance between intermediate destinations reduces and the size of 
the cloaking area reduces as well. Under the reduced size of the 
cloaking area, the dummy locations are limited to be distributed 
within the cloaking area. More importantly, as the convex hull size 
increases, it becomes difficult for the adversary to predict the tra-
jectory of the drone.
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Fig. 7. Impact of the number of dummy locations and intermediate destinations on the path towards the target.
In addition, we measure the total number of paths that the 
drone can select to detect the stationary and mobile targets in 
Fig. 12. Both np and n′

p heavily depend on nd and k (see Eqs. (4)
and (5)). Since the path consists of a set of trajectories located 
between intermediate destinations, the total number of paths is 
proportional to nd . Since k directly affects the number of trajecto-
ries, np increases as k increases. The difference between np and n′

p
is how flexibly the drone selects the dummy locations contribut-
ing to the trajectory. n′

p counts the paths that include at least one 
dummy location but np should include all the dummy locations. 
Thus, n′

p is significantly higher than np . In Fig. 12, we set nd to 
two because of the complexity in calculating the number of paths. 
Although nd is small, the total number of paths is quite high. As 
the target moves, the path is supposed to be changed with addi-
tional intermediate destinations (see Fig. 9). All the np are similar 
for entire mobility models. However, n′

p under the linear and cir-
cular mobility models is significantly higher than that of random 
waypoint mobility. This is because more intermediate destinations 
and their corresponding trajectories are generated.

Detection delay: In Fig. 13, we measure the detection delay of 
three target tracking strategies. The detection delay is a latency 
that the drone takes from launching at the base to locating the tar-
get within the detection range. The detection delay of the mobile 
target may vary depending on the mobility model. Thus, we ex-
periment with a stationary target for performance comparison. In 
Subfig. 13(a), the detection delay of SPT shows the lowest detec-
tion delay in the strategies because the path is a straight line from 
the base to the target. The delay of SPT is used as the performance 
bottom line in this paper. The delay of RLT slightly increases as the 
drone has limited randomization of the path by visiting randomly 
generated intermediate destinations.

Three variants of DLT are provided by selecting a different num-
ber of dummy locations involved in the trajectory in Subfig. 13(b). 
Given nr , the drone can choose different trajectories between in-
termediate destinations by visiting single (DLT-Single), selective 
8

Fig. 8. A snapshot of the randomized path, where the empty blue circle and red 
rectangle are a dummy location and an intermediate destination, respectively. A 
solid blue circle represents the point where the drone flies towards the target. Here, 
nd = 8, nr = 5.

(DLT-Selective), or all (DLT-All) dummy locations. Since the path 
randomization is proportional to nr , the detection delay increases 
as nr increases. Here, nr ranges from 3 to 15 and nd is set to 5. 
As nr increases, the drone moves more in a zigzag manner to-
wards the target and thus, the detection delay of all three variants 
increases. The DLT-All shows the highest detection delay in the 
variants because the drone follows all the dummy locations in 
each trajectory. Here, the DTL-All can be considered as the per-
formance upper bound. Since the DLT-Selective involves a subset 
of dummy locations in the trajectory, its detection delay is slightly 
higher than that of the DLT-Single. However, the DTL-Selective in-
creases the path randomization.

Number of packets exchanged: In Fig. 14, we count the average 
number of packets exchanged between the drone and server. In 
Subfig. 14(a), we compare the performance of three target track-
ing strategies with both stationary and mobile target scenarios. For 
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Fig. 9. Drone traces for mobile target with three mobility models: linear, circular, and random waypoint. Here, Subfigs. (a) to (c) deploy nd = 3 and nr = 5. Subfigs. (d) to (f) 
deploy nd = 10 and nr = 5.
Fig. 10. Entropy against k for stationary and mobile targets, respectively. In Sub-
fig. 10(a), nd is set from 3 to 10. In Subfig. 10(b), nd is set to 7.

comparison purposes, we set nd to 5 for the DLT. The RLT shows 
the lowest average number of packets because the drone follows 
9

the shortest path to the target. Since the DLT frequently sends 
queries to the server whenever it arrives at intermediate destina-
tions, the DLT shows a higher average number of packets than that 
of both SPT and RLT. When the target follows circular mobility, 
both RLT and DLT show a higher average number of packets than 
that of the SPT because more updates of the target location are 
needed.

In Subfig. 14(b), for a stationary target, the drone contacts the 
server at every pre-determined intermediate destination. This is 
because the drone does not know whether the target is station-
ary or mobile. The average number of packets increases as nd in-
creases. In the case of the mobile target, the current location of the 
target is time-varying. Since the mobility of the target increases nd , 
the drone frequently contacts the server for whereabout the target. 
Thus, the average number of packets increases significantly.

5. Discussion

To see the full potential of the proposed tracking strategies, 
we raise several research issues for discussion and future work. In 
particular, we introduce mission-oriented use cases in which our 
research can be an important role in both civilian and military en-
vironments.

5.1. Constraints of target tracking

Due to the inherent resource constraints of drone, we need to 
consider potential constraints that could impact the design and 
performance of the proposed target tracking strategies. In this pa-
per, we deploy both stationary and mobile target scenarios in a 
limited size network. If a target should be located in a wide area 
network, however, energy-conserving based tracking is essential 
because the drone is powered by a limited battery. Since energy 
consumption is proportional to flying distance, the drone may not 
be feasible to track such a long-distance target for an extended 
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Fig. 11. The average percentage of convex hull area out of the cloaking area against 
nr for stationary and mobile targets, respectively.

Fig. 12. The total number of paths for both stationary and mobile targets, respec-
tively. Here, nd is set to 2.

period. The path should be built not only to quickly locate the tar-
get but also to efficiently confuse an adversary. The shortest path 
can reduce the energy consumption of drone, but the future trajec-
tory of the drone can easily be predictable by the adversary. Thus, 
energy-conserving and privacy-preserving approaches are conflict-
ing requirements, and optimization of both is admittedly extremely 
complex.

We also implicitly assume that a path between user and target 
is not affected by any static obstacles, such as buildings, moun-
tains, or trees. A weather condition (e.g., rain or wind) can be a 
part of dynamic obstacles. However, we need to relax this assump-
tion by considering the limited number of intermediate destina-
tions or even the unavailability of some intermediate destinations 
along the path during flight. Due to the obstacles, a planned in-
10
Fig. 13. Detection delay against nr ranging from 3 to 15. Here, nd is set to 5.

termediate destination may not be involved in the path. This can 
directly impact the trajectory and its randomization, leading to the 
change of a set of dummy locations. To balance the energy con-
sumption and level of privacy, the number of dummy locations can 
be adjusted depending on the distance between intermediate des-
tinations.

In addition, the drone conducts the proposed tracking strategies 
based on the updated location of the target (e.g., mobile target) 
that is replied to by the server. If the drone cannot be updated be-
cause of link disconnection or packet loss, it may fly toward the 
next intermediate destination with the staled location of the tar-
get, resulting in a longer detection delay. In this paper, we deploy a 
single drone that solely relies on communication with the server. 
Reliable link connectivity between the server and drone may di-
rectly affect the performance of target tracking. Multiple drones 
can further be considered to collaboratively track the target.

5.2. Map-based target tracking and path planning

The proposed drone-assisted target tracking strategies can play 
a critical role in implementing mission-oriented operations in both 
civilian and military environments, such as surveillance, recon-
naissance, or post-disaster relief. We envision that the advance in 
technology will enable users to have a personal drone, just like a 
smartphone. A light-weighted and micro-sized drone will be inte-
grated with a wireless and mobile device for portability. For exam-
ple, a soldier will carry a drone equipped with appropriate sensors 
and devices and conduct a reconnaissance operation by launching 
the drone. The drone flies towards a set of strategic locations to 
scan a target or unknown area. To hide the current location of the 
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Fig. 14. The average number of packets exchanged between the drone and server.

drone and soldier from an enemy, the drone randomizes trajecto-
ries while flying from one location to another.

In the reconnaissance operation, the soldier may not be famil-
iar with the area to scan. It would take a time to identify a set of 
strategic locations even before launching a drone. In light of this, 
we will develop a path planning algorithm to produce a set of lo-
cations by considering geographical features that can be extracted 
from a map. Depending on a given mission, the soldier will use 
mission-related constraints and conditions to further filter the lo-
cations to scan. The extracted locations will be connected to build 
a path, in which the drone will randomize trajectories while fly-
ing from one location to another. A rationale behind this approach 
is that, for example, Google Maps embeds a variety of informa-
tion, such as flooding, wildfire, road accident, or geographical data, 
and shows it on the map directly in a real-time fashion. The em-
bedded information can be retrieved by using the Google Maps 
application programming interface (API). We expect that the public 
map will embed more information to enhance the public interest 
and safety. Compared to the public map, a military map embeds 
more detail and accurate geographical and strategic information. 
The map-based path planning will be best suited to strategically 
scan an area when it is not clearly identified during the night.

In addition, the map-based path planning can be extended to 
a civilian application, disaster relief operation, if the drone does 
not randomize the trajectories. For example, a rescue team will 
extract a set of target locations (e.g., residential area) to find any 
survivors in an emergency site impacted by disasters, such as an 
earthquake or flooding. This is because survivors would likely be 
found more in the residential or commercial areas than in rural 
areas. The drone is able to strategically rescue survivors by follow-
ing the locations.
11
5.3. Drone-assisted smart communities

In this paper, a drone communicates with the server to update 
the whereabouts of a static or mobile target. We need to relax 
this server-based approach and extend the limited connectivity of 
drones. There has been a research effort for flexible connectivi-
ties and accessibilities in drone-based operations [43,44]. A single 
or multiple drones are deployed in a micro cell-sized network 
to seamlessly relay ongoing user communications to enhance the 
connectivity. Drones are also deployed in an isolated area or emer-
gency site, where the existing infrastructure network is not avail-
able or has been collapsed, and play an important role as a mobile 
base station to extend ad hoc networks. Frequently accessed or 
popular data are stored in drones to enhance data accessibility and 
availability [45,46].

We will develop a collaborative target tracking technique to 
efficiently share the location and status of the target for detec-
tion via infrastructure-based or infrastructure-less networks. In this 
research, a vehicle is considered as a mobile target under a hit-
and-run scenario. Due to high-speed mobility, the vehicle resides 
in a coverage area for a short period. For the sake of simplicity, 
a single drone powered by a battery is deployed in a network, 
where roadside units (RSUs) and access points (APs) are available 
for communications. Since wireless communication could be re-
sponsible for more than half of total energy consumption, we will 
investigate how to minimize the energy consumption of the drone 
but to maximize interactions among network components to re-
duce the detection delay of the target. A set of control packets and 
its corresponding operations among network components will also 
be investigated. In addition, we will build a small-scale testbed 
with a micro drone (e.g., Crazyflie [47]) for proof-of-concept. We 
will conduct the experiments in both indoor and outdoor envi-
ronments. Here, Crazyflie is a programmable micro drone and has 
been widely used in research, education, and industry for its com-
plete control and full flexibility while deployed in diverse applica-
tions, such as autonomous flight, pathfinding, environment scan-
ning, etc.

6. Concluding remarks

Unlike prior research focusing on the protection of users and re-
stricted areas from an unwanted privacy attack and intrusion, we 
shifted the privacy paradigm to protecting the drone’s location pri-
vacy. Three drone-based target tracking strategies were proposed 
to detect a static or mobile target while protecting the location 
privacy of the drone via obfuscating the current location of the 
drone and randomizing the trajectory. We analyzed and measured 
drone privacy in terms of entropy-based anonymity, the size of the 
convex hull, and the number of location paths. We evaluated the 
proposed strategies through extensive simulation experiments. The 
results show that the proposed strategies can track and detect the 
target by following randomized trajectories. We envision that the 
proposed strategies can be applied to diverse drone-based applica-
tions in realizing a smart and connected community.
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