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Abstract: Aiming at the failure of traditional visual slam localization caused by dynamic target
interference and weak texture in underground complexes, an effective robot localization scheme was
designed in this paper. Firstly, the Harris algorithm with stronger corner detection ability was used,
which further improved the ORB (oriented FAST and rotated BRIEF) algorithm of traditional visual
slam. Secondly, the non-uniform rational B-splines algorithm was used to transform the discrete data
of inertial measurement unit (IMU) into second-order steerable continuous data, and the visual sensor
data were fused with IMU data. Finally, the experimental results under the KITTI dataset, EUROC
dataset, and a simulated real scene proved that the method used in this paper has the characteristics
of stronger robustness, better localization accuracy, small size of hardware equipment, and low
power consumption.

Keywords: SLAM (simultaneous localization and mapping); sensor fusion of visual and IMU;
nonlinear optimization; sliding window

1. Introduction

With the continuous expansion of urban scale and the continuous development of
urban underground space, urban underground complex plays a more and more important
role in urban development. At present, urban underground complexes mainly include
rail transit stations, underground commercial streets, underground parking lots, and
underground building entrances [1]. Underground commercial streets are places with high
fire incidence, and the exhaust gas concentration of an underground parking lot is high.
It is very important to design mobile robots to replace manual inspection in underground
complex. The synchronous location and mapping (SLAM) technology is the key to realizing
the autonomous navigation and inspection of mobile robots. Slam technology aims to use
the self-loaded sensors to estimate their own position and posture, as well as to dynamically
build a real-time map of the surrounding environment in an incremental way. After nearly
20 years of development, slam technology has played an important role in the fields of
autonomous driving, unmanned driving, virtual reality, augmented reality, unmanned
aerial vehicles, and so on. At present, the sensors used in the slam system mainly include
camera, lidar, and inertial measurement units (IMU), and have two directions: laser slam
and visual slam.

In 2014, Zhang and Singh proposed the LOAM (LIDAR odometry and mapping)
algorithm [2], which obtained better pose estimation and 3D maps by calculating the
curvature of each point in the point cloud and extracting the plane and edge features in the
point cloud. In 2016, Google opened the laser SLAM algorithm Cartographer [3], which
proposed the idea of local submap, which greatly accelerated the speed of loop-closure.
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In 2018, Shan and others proposed the Lego-LOAM [4], which proposed the idea of
clustering based on LOAM. In inter frame matching, only the points of the same cluster
other than the ground cluster are matched, which increases the processing efficiency and
ensures high accuracy. In the same year, Kim and others proposed SC-Lego-LOAM and
added the Scan Context algorithm [5] on the basis of Lego-LOAM, which made up for the
defect of poor loop-closure effect of Lego-LOAM. In 2020, Shan and others proposed the
LIO-SAM algorithm [6]. LIO-SAM is a tightly coupled lidar inertial odometer framework
based on factor graph, which is suitable for multi-sensor fusion and global optimization.
It proposes an efficient scanning matching method based on the local sliding window,
which improves the real-time performance. The above methods [2–6] belong to laser-
based SLAM. LSD-SLAM (large-scale direct monocular SLAM) [7] proposed by Engel and
others. It is a SLAM system based on direct method. The system is suitable for large-scale
scenes and building large-scale and globally consistent environment maps. The visual
odometer based on DSO (direct spark odometry) [8] sparse direct method is superior to
LSD-SLAM in accuracy, stability, and speed. The semi-direct visual odometer SVO (semi-
direct visual odomtry) was proposed by Forster et al. [9]. It combines the advantages of the
method based on feature points and the direct tracking optical flow method, generating a
lightweight environment map. The ORB-SLAM framework is a popular visual framework
of the feature point method at present [10]. The front end is based on ORB features, which
not only reduce the amount of calculation but also have higher accuracy than the direct
method. On the basis of this framework, researchers have proposed several improved
versions. ORB-SLAM2 is the first open-source SLAM algorithm supporting monocular,
binocular, and RGB-D cameras; the BA method used at the back end of the algorithm
can accurately estimate the scale of the trajectory [11]. Carlos and others proposed ORB-
SLAM3 in 2021 [12]. The multi-map system of the algorithm enabled the algorithm to
maintain operation when visual information was lost for a long period of time. The above
methods belong to visual-SLAM. However, there are a large number of mobile people
in the underground complex, which seriously interferes with the information collected
by laser sensors and visual sensors. The texture of the building facing materials of the
underground complex is simple, and the environmental features are sparse, so it is difficult
to extract the features. As a result, the traditional laser slam and visual slam are difficult to
be directly applied to the scene of an underground complex.

Aiming at the dynamic target interference and weak texture characteristics of un-
derground complex, a robot positioning method based on binocular vision and inertial
navigation (IMU) fusion is designed in this paper.

The main contributions of this paper are provided as follows:

(1) The combination of the Harris algorithm and the optical flow pyramid tracking
method enhances the robustness of the visual positioning system and then solves the
problem of the front end being difficult in terms of extracting feature points in weak
texture and it being easy to lose tracking.

(2) The interpolation algorithm of non-uniform rational B-spline is used to transform the
discrete data of IMU into a continuous track that can be second-order differentiated, to
align the visual and inertial information, and to improve the anti-dynamic interference
ability by integrating the visual and inertial data.

The remaining parts of this paper are organized as follows: Section 2 mainly introduces
the hardware framework. Section 3 presents the core algorithm design of binocular vision
and interval navigation fusion. Some practical experiments are presented in Section 4 to
demonstrate the effectiveness of the obtained results. The last section concludes this paper.

2. Hardware Framework

As shown in Figure 1, the hardware framework used in this paper is mainly composed
of the binocular inertial navigation module, the inspection robot (chassis), the remote
control, and the robot perception computing platform.
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pre-integral, which can reduce the number of repeated calculation and deduce the 
Jacobian matrix and covariance. Secondly, visual and inertial navigation information 
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Figure 1. Hardware framework of robot.

The camera uses the small binocular inertial navigation integrated module and uses a
120 degree wide angle lens to obtain environmental information as much as possible. The
IMU is a six-axis BMI088 sensor manufactured by BOSCH with a synchronization accuracy
of 0.05 ms.

The computing platform is mainly responsible for processing sensor data, using
Intel(R) Core(TM) I7-7700HQ CPU, 4 cores, 8 threads, 16 GB LPDDR4 memory; the main
frequency is 2.80 ghz. The operating system is Ubuntu18.04 LTS, in which ROS (robot
operating system) is installed to deal with the communication of various sensor data and
the operation of specific algorithms.

3. Core Algorithm Design of Binocular Vision and Interval Navigation Fusion

In this paper, the positioning method of visual fusion inertial navigation designed is
mainly composed of the following three parts:

(1) Through the study of traditional visual odometers, it is found that the front end
based on ORB feature points is not suitable for a weakly textured environment. The
improved Harris algorithm with a stronger ability to extract corner points ensures
that the front end can extract more feature points from weak texture.

(2) Due to the high sampling frequency of the inertial navigation system, it is difficult to
align and fuse high-frequency data with low-frequency data. To solve these problems,
firstly, we studied and analyzed various factors of inertial navigation error, simplified
the inertial navigation model, and reduced the difficulty of calculation. Secondly, non-
uniform rational B-spline algorithm was used to transform high-frequency discrete
IMU data into a second-derivable continuous trajectory, which is convenient for fusion
with visual information.

(3) As for integration of vision and inertial navigation, first, since every update of back-
end optimization needs to recalculate the inertial derivative data in the world coor-
dinate system, the original inertial derivative data can be preprocessed to obtain the
pre-integral, which can reduce the number of repeated calculation and deduce the
Jacobian matrix and covariance. Secondly, visual and inertial navigation information
were integrated in a tightly coupled way to construct optimization objective function
and state variables. Thirdly, a more reasonable Levenberg–Marquardt method was
introduced to solve the non-singular ill-condition problems in the fusion optimization
problem. Fourthly, sliding windows and marginalization were adopted to delete the
old state quantity and release the computing power in view of the growing computing
scale of the back end.
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The above steps can be represented by the following flow chart (Figure 2):
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3.1. Binocular Vision Algorithm

In this paper, the binocular vision algorithm mainly consisted of front end, back end,
and loop-closure.

In the front end, the following method was used to obtain the camera pose transfor-
mation between two adjacent frames:

(1) Extract Harris feature points of the first frame [13].
(2) LK multilayer optical flow was used to calculate the corresponding feature points in

the second frame [14].
(3) DLT (direct linear transformation) was used to calculate the pose transformation of

the camera through matched pairs of feature points [15].

In the back end, BA (bundle adjustment method) was adopted to modify the existing
camera pose and roadmap [16].

In the aspect of loop-closure, the bag-of-words (BoW) model was adopted, and the
steps are as follows:

(1) A number of pictures around the field scene were collected in advance, FAST fea-
ture points of each image were extracted, BRIEF descriptors of feature points were
calculated to construct words of the image [17], DBoW3 was used as a dictionary to
store words [18,19], and the TF-IDF algorithm was used to add different weights to
different words [20].

(2) At the same time, for each image obtained, the characteristics of the image were
described as words in BoW, the frequency of words was counted, and an image was
converted into a group of words.

The similarity of words in each image is calculated to determine whether loop-closure
is triggered.



Sensors 2022, 22, 5711 5 of 19

3.2. Inertial Navigation Algorithm

The inertial navigation system has a stronger anti-interference ability compared with
the visual positioning system, but there are many factors affecting the error that will lead
to the drift of the inertial measurement value and the accumulated error being too large.
This paper introduces the basic content of inertial navigation and lays the foundation for
the subsequent multi-sensor fusion.

3.2.1. Inertial Error Model

The errors of the accelerometer and gyroscope in inertial navigation (IMU) can be
divided into deterministic errors and random errors. Deterministic errors can be obtained
through prior calibration, which mainly includes bias errors, scale errors, and axis mis-
alignments [21]. For random error, it is assumed that the noise obeys Gaussian distribution,
including Gaussian white noise and bias random walk. The formula of the total error
model can be expressed as

∼
ω

b
= Sgωb + bg + ng (1)

∼
a

b
= Saqbw(aw − gw) + ba + na (2)

In Formula (1),
∼
ω

b
and ωb represent the measured value and the real value of angular

velocity in the body coordinate system of IMU, respectively; bg and ng denote the bias
random walk and Gaussian white noise of the gyroscope, respectively; and Sg is the scale

factor of the gyroscope. In Formula (2),
∼
a

b
is the measured value of acceleration in the

body coordinate system of IMU; aw and gw are the world coordinates of real value and
gravity acceleration, respectively; ba and na denote the bias random walk and Gaussian
white noise of the accelerometer, respectively; Sa is the scale factor of the accelerometer;
and qbw denotes the rotation transformation from body to world coordinates.

3.2.2. Inertial Derivatives Calculated

There are usually two methods to solve IMU data, namely, the Euler method and the
median method.

The Euler method assumes that the derivative of the integrand function is constant in
a short period of time. When calculating the pose at k+1, the linear velocity and angular
velocity used are those measured at k, and the formula can be designed as

Pwbk+1
= Pwbk

+ vw
k ∆t +

1
2

a∆t2 (3)

vw
k+1 = vw

k + a∆t (4)

qwbk+1
= qwbk

⊗
[

1
1
2 ωδt

]
(5)

a = qwbk

(
abk − ba

k

)
− gw (6)

ω = ωbk − bg
k (7)

In the above formula, Pwbk
and Pwbk+1

are the position coordinates of the robot in
the world coordinate system at time k and time k+1, respectively; vw

k and vw
k+1 are the

robot speed in the world coordinate system at time k and time k+1, respectively; a is the
acceleration; ∆t is the time interval between k and k+1; qwbk

and qwbk+1
denote robot rotation

information in the world coordinate system at time k and time k+1, respectively; ⊗ stands
for quaternion multiplication; abk is the acceleration in the body coordinate system of IMU
at time k; ba

k is the bias noise; gw denotes acceleration of gravity; ωbk is the angular velocity
in the body coordinate system of IMU at time k; and bg

k denotes the bias noise.
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Although the median method also assumes that the derivative of the integrand is
constant in a short period of time, the linear velocity and angular velocity used in the
calculation are the average values of the linear velocity and angular velocity measured at
the moment k and k+1, and the formula can be expressed as

Pwbk+1
= Pwbk

+ vw
k ∆t +

1
2

a∆t2 (8)

vw
k+1 = vw

k + a∆t (9)

qwbk+1
= qwbk

⊗
[

1
1
2 ωδt

]
(10)

a =
1
2

[
qwbk

(
abk − ba

k

)
− gw + qwbk+1

(
abk+1 − ba

k

)
− gw

]
(11)

ω =
1
2

[(
ωbk − bg

k

)
+
(

ωbk+1 − bg
k

)]
(12)

The new variables in the above formula are as follows: abk+1 is the acceleration in
the body coordinate system of IMU at k+1, and ωbk+1 is the angular velocity in the body
coordinate system of IMU at k+1.

Inertial navigation has a very high sampling frequency (usually between 100 and
200 Hz) and the raw data obtained from inertial navigation is huge. The computing
platform mounted on the inspection robot has limited computing power, but it is expected
that the calculation error is small. Therefore, a simulation experiment was designed to
compare the performance of the two algorithms.

Suppose a particle is moving elliptically in the xy plane and sinusoidal in the z axis.
The other particle performs the same motion as the first point, but adds the IMU kinematic
model and outputs the values measured by the IMU in the simulation. According to
the motion model of IMU in continuous time, the Euler method and median method are
adopted. By comparing the error mean and time consumption of the Euler method and
median method, an appropriate integration algorithm is selected.

Let the motion parameter equation of the particle be translated as

(15 cos(πt/10 + 5), 20 sin(πt/10), sin(πt) + 5) (13)

The rotation formula can be expressed as

(0.1 cos(t), 0.2 sin(t), πt) (14)

where t is the time.
As shown in Figure 3, the blue curve is the true value of particle trajectory, while

the yellow curve is the trajectory of a particle calculated by the Euler method or median
method under the measurement of the IMU model. The mean error of the Euler method
is 0.03099, and the mean error of median method is 0.02130. The latter is 31.27% higher
than the former. The average calculation time of the two algorithms on 10 sets of data are
0.05571 s and 0.07061 s, respectively. The speed of the former is 21.10% faster than the
latter. In the fusion algorithm, even if the initial pose is not accurate, the subsequent pose
will continue to be optimized. However, time wasted cannot be recovered, which is an
irreversible indicator. In view of the large number of computing modules in the system, it is
necessary to allocate computing resources reasonably to ensure the real-time performance
of the fusion system. Therefore, for the whole visual and inertial navigation integration
system, this paper finally chose the Euler integral.
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3.2.3. Nonuniform Rational B Spline

The discrete position, velocity, and attitude information can be obtained by IMU data
solution, and the position and attitude information obtained by visual odometer is also
discrete. The problem of timestamp unsynchronization exists between two kinds of discrete
data [22]. If a smooth, multi-order differentiable curve is generated according to the discrete
visual odometer data, the angular velocity can be obtained by taking the first derivative of
the curve, which can be compared with the angular velocity obtained by IMU solution, so
as to realize the alignment between the visual odometer and IMU data.

The Bessel curve is usually used to series known discrete points to generate a continuous
trajectory, but when there are too many points, adjusting any one point will affect the whole
Bessel curve, and each point will have weaker control over the curve. On this basis, this paper
improved and adopted the NURBS (non-uniform rational B-splines) method [23] to solve the
above problems through multiple recursion of piecewise functions. Non-uniform means that
there is a difference between each two node vectors, and rational means that different weights
can be applied to each point; the formula can be expressed as

P(t) =

n
∑

i=0
ωiPi Ni,k(t)

n
∑

i=0
ωi Ni,k(t)

(15)

where t denotes the node, T = [t0, t1, . . . , tn+k] means the set range, ωi means the weight
factor, k is the degree of this curve, Ni,k(t) denotes the i-th and k-th B-spline basis function,
and pi means the i-th control point in the Bezier curve; the recursive formula (Cox-de Boor)
is defined as

Ni,0(t) =
{

1, ti ≤ t < ti+1
0, t ≥ ti+1 or t < ti+1

(16)

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t), k ≥ 1 (17)

Through the recursive logic of B-spline basis function, it can be found that each
k-degree basis function only has values in n node intervals, which means that this control
point achieves local control that the Bessel curve cannot achieve.

3.3. A Tightly Coupled Visual and Inertial Fusion Algorithm

The first two sections mainly introduce the method of pure visual positioning and pure
inertial positioning and make some improvements for specific scenes. The main content of
this section is to solve the problem of fusion of two types of non-homologous sensor data.

3.3.1. IMU Data Preprocessing

IMU has a high sampling frequency and a large amount of data. In optimization
problems, it is impossible to put so much data into state variables. Therefore, the usual
practice is as follows: Given the translation, velocity, and attitude of the k-th s, and given
all the data between the k-th sand the k+1 s as well as the known dynamics equation,
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integrating from the k-th s to the k+1 s, we can finally obtain the translation, velocity,
and attitude of the next moment. However, in the subsequent optimization algorithm,
if the iterative solution calculation updates the state quantity in this way, every time the
starting point of the iteration changes, or if any state quantity is adjusted midway, it must
be re-integrated in order to obtain the following trajectory. Limited computing resources
cannot support such calculations. To solve this problem, the IMU pre-integration algorithm
is used [24–26], and the formula can be defined as

Rbk
w pw

bk+1
= Rbk

w

(
pw

bw
+ vw

bk
∆tk −

1
2

gw∆t2
k

)
+ α

bk
bk+1

(18)

Rbk
w vw

bk+1
= Rbk

w

(
vw

bk
− gw∆tk

)
+ β

bk
bk+1

(19)

qbk
w ⊗ qw

bk+1
= γ

bk
bk+1

(20)

where Rbk
w is the rotation transformation from IMU coordinate system to the world coor-

dinate system at time k; qbk
w is the quaternion form; Pw

bk
and Pw

bk+1
represent the position

coordinates of IMU at k moment and k+1 moment in the world coordinate system, re-
spectively; vw

bk
and vw

bk+1
represent the velocity of IMU at time k and time k+1 in the world

coordinate system, respectively; gw is the acceleration of gravity in the world coordinate
system; and ∆tk is the interval between k moment and k+1 moment; the definition of α

bk
bk+1

,

β
bk
bk+1

, and γ
bk
bk+1

are defined as follows

α
bk
bk+1

=
x

t∈[k,k+1]

[
Rbk

t

(∼
a t − bat

)]
dt2 (21)

β
bk
bk+1

=
∫

t∈[k,k+1]

[
Rbk

t

(∼
a t − bat

)]
dt (22)

γ
bk
bk+1

=
∫

t∈[k,k+1]

1
2

Ω
(∼

ωt − bwt

)
γ

bk
t dt (23)

Ω(ω) =

[
−[ω]× ω

−ωT 0

]
(24)

where
∼
a t and

∼
ωt are acceleration and angular velocity given by IMU at time T, respectively;

bat and bwt are bias noises; and α
bk
bk+1

, β
bk
bk+1

, and γ
bk
bk+1

are the pre-product components of
translation, velocity, and attitude from frame bk to frame bk+1 respectively.

IMU pre-integration can effectively reduce the amount of calculations. However, the
noise variance of the original IMU data as the measured value can be obtained through
calibration, but the uncertainty of the pre-integration is unknown now, so the covariance of
the pre-integration needs to be derived.

In discrete form, the linear transfer of the incremental error at adjacent moments
satisfies the equation and can be expressed as

δ
.
zbk

t+δt = Ftδzbk
t + Gtnt (25)

The parameters are as follows

zbk
t =

[
δαk δθk δβk δbak δbwk

]T (26)

nt =
[
nak nwk nak+1 nwk+1 nba nbw

]T (27)
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Ft =


I f01 Iδt f03 f04
0 f11 0 0 −Iδt
0 f21 I f23 f24
0 0 0 I 0
0 0 0 0 I

 (28)

Gt =


v00 v01 v02 v03 0 0
0 − Iδt

2 0 − Iδt
2 0 0

− Rkδt
2 v21 − Rk+1δt

2 v23 0 0
0 0 0 0 Iδt 0
0 0 0 0 0 Iδt

 (29)

where zbk
t is a vector composed of five state increments, namely, pre-integrated translation,

rotation, velocity, accelerometer bias noise, and gyroscope bias noise [27]. The details of
parameters in matrix Ft, Gt are shown in Table 1.

Table 1. The parameters in matrix Ft, Gt.

Coefficient Mathematical Formula

f01 − 1
4

(
Rbibk

[
abk − ba

k

]
×

δt2 + Rbibk+1

[(
abk − ba

k

)]
×
(I − [ω]×δt)δt2

)
f03 − 1

4
(
qbibk

+ qbibk+1

)
δt2

f04 − 1
4

(
Rbibk+1

[(
abk − ba

k

)]
×

δt2
)
(−δt)

f11 I − [ω]×
f21 − 1

2

(
Rbibk

[
abk − ba

k

]
×

δt + Rbibk+1

[(
abk − ba

k

)]
×
(I − [ω]×δt)δt

)
f23 − 1

2
(
qbibk

+ qbibk+1

)
δt

f24 − 1
2

(
Rbibk+1

[(
abk − ba

k

)]
×

δt
)
(−δt)

v00
1
4 qbibk

δt2

v01 − 1
4

(
Rbibk+1

[(
abk − ba

k

)]
×

δt2
)(

1
2 δt
)

v02
1
4 qbibk+1

δt2

v03 − 1
4

(
Rbibk+1

[(
abk − ba

k

)]
×

δt2
)(

1
2 δt
)

v21 − 1
2

(
Rbibk+1

[(
abk − ba

k

)]
×

δt2
)(

1
2 δt
)

v23 − 1
2

(
Rbibk+1

[(
abk − ba

k

)]
×

δt2
)(

1
2 δt
)

It can be seen from Formula (25) that error transmission can be divided into two types:
error transmission from the current moment to the next moment and measurement noise
transmission from the current moment to the next moment.

Here, δzbk
t+δt can be approximated by first-order Taylor, and the formula can be

expressed as
δzbk

t+δt = δzbk
t + δ

.
zbk

t δt
= (I + Ftδt)δzbk

t + (Gtδt)nt

= Fδzbk
t + Vnt

(30)

According to Formula (30), IMU measurement error is transitive, and the error at the
current moment has a linear relationship with the covariance at the next moment, so the
latter can be calculated from the former.

The calculation formula of covariance matrix can be expressed as

Pbk
t+δt = (I + Ftδt)Pbt

t (I + Ftδt)T + (Gtδt)Q(Gtδt)T (31)
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where the initial value of variance is Pbk
0 = 0, and Q is the diagonal covariance matrix of

the noise term.
In addition, according to the formula, the iterative formula of the Jacobian matrix of

the error term can be obtained
Jt+δt = (I + Ftδt)Jt (32)

where Jt is the Jacobian matrix, and the initial value of the Jacobian matrix is the identity matrix.
The pre-integral values of IMU, covariance matrix, and Jacobian matrix of residuals

are deduced above.

3.3.2. Construction of Residual Equation

In order to describe the difference between the two sensors, a nonlinear objective
function needs to be constructed. The objective of optimization is to make the difference as
small as possible. Optimization variables include camera information and IMU information.
The initial value of iteration is the imprecise initial value measured by the sensor, and then
optimization is carried out on this basis, so as to ensure that the optimized variable is the
global optimal as much as possible and avoid falling into the local optimal solution.

(a) The state vector

The elements of the state vector include n + 1 sensor state quantity, one external
parameter, and inverse depth of m + 1 space path punctuation [28]. The formula can be
expressed as

X =
[

x0, x1, . . . , xn, xb
c , λ0, λ1, . . . , λm

]
(33)

xk =
[

pw
bk

, vw
bk

, qw
bk

, ba, bg

]
(34)

xb
c =

[
pb

c , qb
c

]
(35)

where X is the state vector, and xk denotes the state quantity of the sensor in the k-th frame
in the sliding window, in which there are n key frames in total. Each state quantity has
five variables, namely, the translation of the k-th frame, the velocity quantity, the rotation
quantity, and the deviation between the accelerometer and the gyroscope. xb

c is the external
parameter from camera to IMU. The inverse depth is the inverse of the signpost depth.

(b) Inertial constraint

Define the difference between IMU position, rotation, velocity, acceleration bias, and
gyro bias changes every two frames, and the formula can be expressed as

rB

(
∼
z

bk
bk+1

, X
)
=


δα

bk
bk+1

δθ
bk
bk+1

δβ
bk
bk+1

δba
δbg

 =



Rbk
w

(
pw

bk+1
− pw

bk
− vw

bk
∆tk +

1
2 gw∆t2

k

)
− α

bk
bk+1

2
[
γ

bk
bk+1
⊗ qw

bk
−1 ⊗ qw

bk+1

]
xyz

Rbk
w

(
vw

bk+1
− vw

bk
+ gw∆tk

)
− β

bk
bk+1

babk+1
− babk

bωbk+1
− bωbk


(36)

The optimization variables in the formula are the state quantity of frame k and the
state quantity of frame k + 1, and there are 10 variables in total.

(c) Visual constraints

Visual residuals occur when pixels are reprojected. In order to obtain the ideal sensor
pose, visual residuals need to be minimized. The coordinate value of the landmark point
l observed in the camera coordinate system of frame i projected to the pixel is converted to
the camera coordinate system of frame j, and the visual residual is composed of the pixel
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coordinate value obtained by conversion and the directly observed pixel coordinate value,
and the calculation formula can be expressed as

rC

(∼
z

cj
l , X

)
=


xcj
zcj
− ucj

ycj
zcj
− vcj

 (37)

where xcj , ycj , zcj are the space coordinate value obtained by conversion, and ucj , vcj is the
pixel coordinate value obtained by direct observation. The value of the feature point in
frame i projected to the camera coordinate system of frame j can be defined as

xCj

yCj

zCj

1

 = T−1
bc T−1

wbj
Twbi

Tbc


1
λ uCi
1
λ vCi

1
λ
1

 (38)

where λ is the inverse depth. The optimization variables are two moment state variables,
external parameters and inverse depth.

(d) Global objective function

Building the overall objective function includes prior information, visual information,
and IMU constraint information, and in integrating the information of various sensors into
the nonlinear optimization to obtain the optimal state vector, the formula can be expressed as

min
X

∥∥rp − JpX
∥∥2

+ ∑
k∈B

∥∥∥∥rB

(
∼
z

bk
bk+1

, X
)∥∥∥∥2

P
bk
bk+1

+ ∑
(l,j)∈C

∥∥∥∥rc

(
∼
z

Cj
l , X

)∥∥∥∥2

P
Cj
l

 (39)

where P
Cj
l is noise covariance generated by visual observation, and the noise covariance

generated by IMU pre-integration is Pbk
bk+1

. Covariance is a weight that regulates the
confidence of IMU and visual sensors in fusion. The more noise a sensor makes, the less
reliable it is. Reduce the weight of this sensor and increase the weight of another sensor.

3.3.3. Nonlinear Optimization Solution

After constructing the nonlinear objective function of vision and IMU fusion, solving
this equation requires knowing the global properties of the objective function, but it cannot
be solved directly. In this paper, both the Levenberg–Marquardt (L-M) method and the
Gauss–Newton (G-N) method were used as the gradient descent strategy. When the
problem is good, the Gauss–Newton method is used. If the problem approaches pathology,
the Levenberg–Marquardt method is used [29].

In the actual fusion process of vision and IMU, if disturbed, the value of a certain
residual term will be much higher than that of other normal residual terms. This wrong
residual term will concentrate computing resources, resulting in the lack of computing
resources for the correct residual term. Incorrect residuals can be “intelligently” filtered
using the Huber kernel [30]. When the error is greater than the threshold value, it will be
judged as the wrong residual term, and the function of the first form must be used to limit
the error growth. If the error is less than the threshold, the original form is kept, and the
formula can be expressed as

H(e) =

{ 1
2 e2 i f |e| ≤ δ

δ
(
|e| − 1

2 δ
)

otherwise
(40)
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3.3.4. Sliding Windows and Marginalization

In sum, it can be found that the optimization objective function of tightly coupled
fusion data increases dynamically. With the continuous movement of the robot, the state
variables in the objective function increase continuously, which brings difficulties to the
optimization problem. In order to control the growth of optimization scale, this paper
adopted the sliding window method. The sliding window will constantly discard the
oldest state variables and add new ones, and the sum of state variables in the window will
remain constant. Use of multiple state windows can make state estimation more accurate,
and at the same time, a robust optimization cost function can be established to reduce the
influence of external points on state estimation [31]. However, if we delete the old state
directly while maintaining the sliding window, the original visual and IMU constraints
will be broken. In this paper, the marginal method was used to transform the constraint
information into the prior distribution of variables to be optimized.

Suppose that all states of a sliding window can be defined as follows

∆x =

[
∆xm
∆xn

]
(41)

where ∆xm and ∆xn represent m states to be removed and n states to be retained, respectively.
Optimization problems can be expressed as

H∆x = g[
A B
BT D

][
∆xm
∆xn

]
=

[
gm
gn

]
(42)

where ABD is the three matrix blocks of the H matrix, and gm, gn are the two vectors of the
g vector.

There are a total of m + n states in the sliding window, and these m + n variables are
solved as a whole. If the inverse operation of H matrix is solved directly, it will consume a
large amount of computing resources. Moreover, the ∆xm needs to be deleted, so there is
no need to perform a second calculation. Therefore, this paper chose to eliminate the BT

matrix block in the lower left corner, and the formula can be expressed as[
A B
0 D− BT A−1B

][
∆xm
∆xn

]
=

[
gm

gn − BT A−1bm

]
(43)

Thus, the second row of the equation becomes independent of ∆xm. The state variables
to be retained in the sliding window can be obtained by directly solving the second line,
and the formula can be expressed as(

D− BT A−1B
)

∆xn = gn − BT A−1bm (44)

Equation (41) requires only the inverse operation of the matrix block A. In addition,
the number of deleted m variables is far less than the number of retained n variables, which
greatly improves the computational efficiency.

In conclusion, there are three main purposes of marginalization: (1) the amount of
computation is controlled by controlling the size of the sliding window; (2) ensuring that
the frames in the sliding window have sufficient parallax; (3) the amount of operation is
reduced by making the matrix dimension involved in the operation smaller.

In addition, the entire process of tightly coupled visual and IMU fusion can be de-
scribed as in Figure 4.
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4. Experimental Results and Analysis

This chapter mainly carries on the experiment verification to the algorithm designed
above. In this paper, the visual inertial navigation and positioning system were verified by
dataset, quantitative positioning accuracy, and qualitative robustness experiments. Finally,
the conclusion was drawn by analyzing the experimental results.

4.1. Experimental on Dataset

This section uses datasets to test the performance of the proposed fusion location
algorithm. KITTI and EUROC datasets are mainly used in this section. The image sequence
selected by the KITTI dataset was high-speed dynamic pedestrians and vehicles, with
nearly 5000 images, and the scene with the longest distance up to 400 m, simulating the
scene of dynamic interference in the underground complex. The image sequence selected
by the EUROC dataset is the factory of weak texture, with nearly 200 images, and the
scene with the longest distance of 10 m, simulating the environment of weak texture in the
underground complex. The positioning system designed in this paper and ORB-SLAM2 of
pure visual positioning method were tested on these two data sets. Absolute pose error
was used to evaluate the global consistency of the entire trajectory.

Figure 5 is the comparison of the GT (ground truth) of the KITTI dataset, the estimated
value of the algorithm in this paper, and the estimated value of the pure visual method
in six poses in space. The estimated data of X- and Z-axes were relatively close to the GT,
while the data of the Y-axis had obvious deviation, the pitch angle was relatively close, and
the roll angle and yaw angle had obvious deviation, but the overall trend of change was
relatively consistent. As shown in Figure 6, by calculating APE, the maximum APE of ORB-
SLAM2 was 7.48 m, while the maximum APE of the fusion positioning algorithm proposed
in this paper was 2.76 m. It was shown that the fusion positioning system proposed in
this paper can effectively reduce the errors caused by the pure visual positioning method
under dynamic interference, and the improvement effect was up to 63.1%. In addition, the
method adopted in this paper had lower variance and was more stable than ORB-SLAM2.

Figure 7 shows the comparison of the GT in the EUROC dataset, the estimated values
of the algorithm in this paper, and the estimated values of the pure visual method in the
six postures in space. Due to the serious interference of weak texture on the pure visual
positioning method, the change trend of six pose was inconsistent with the GT. However, on
the X-axis and Y-axis, the method used in this paper was closer to the GT than ORB-SLAM.
As shown in Figure 8, by calculating APE, the maximum APE of ORB-SLAM2 was 0.238 m,
while the maximum APE of the fusion positioning algorithm proposed in this paper was
0.155 m. It shows that the fusion positioning system proposed in this paper can effectively
reduce the errors caused by the pure visual positioning method under the condition of
weak texture, and the improvement effect was up to 34.9%.
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4.2. Experimental in Simulated Real Scene

In order to simulate dynamic interference and weak texture scenes of an underground
complex, experiments in an underground complex involve public security and other issues.
As shown in Figure 9, an indoor environment with weak texture was selected for the
experiment, a number of dynamic personnel were added, and a rectangular experimental
track of 4 m × 5 m was laid.
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4.2.1. Positioning Accuracy Test 
Due to the limitation of experimental conditions, the real pose value of the inspection 

robot at every moment cannot be obtained. In order to evaluate the positioning accuracy, 
this section conducts an evaluation from three perspectives: whether the estimated posi-
tioning trajectory was closed, the errors of the starting point and end point before and 
after fusion, and the trajectory deviation. A total of six groups of experiments were con-
ducted. As shown in Figure 10, the left figure was the comparison of the positioning tra-
jectory in the XOY plane after the pure inertial navigation and fusion. Due to the contin-
uous accumulation of errors in the pure inertial navigation, the positioning curve was not 
closed, and the whole trajectory was seriously deformed. The trajectory estimated after 
fusion had smaller deviation and was closer to the ideal trajectory due to the addition of 
visual constraints. At the same time, vision can perform loop detection to make the final 
trajectory closed. The figure on the right shows the comparison between the pure inertial 
navigation and the fused positioning trajectory in the YOZ plane. The measurement re-
sults of pure inertial navigation diverged under the influence of other errors such as zero 
drift. The measured value of the fusion algorithm had some deviation and finally con-
verged to a small error value. 
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4.2.1. Positioning Accuracy Test

Due to the limitation of experimental conditions, the real pose value of the inspection
robot at every moment cannot be obtained. In order to evaluate the positioning accuracy,
this section conducts an evaluation from three perspectives: whether the estimated posi-
tioning trajectory was closed, the errors of the starting point and end point before and after
fusion, and the trajectory deviation. A total of six groups of experiments were conducted.
As shown in Figure 10, the left figure was the comparison of the positioning trajectory
in the XOY plane after the pure inertial navigation and fusion. Due to the continuous
accumulation of errors in the pure inertial navigation, the positioning curve was not closed,
and the whole trajectory was seriously deformed. The trajectory estimated after fusion
had smaller deviation and was closer to the ideal trajectory due to the addition of visual
constraints. At the same time, vision can perform loop detection to make the final trajectory
closed. The figure on the right shows the comparison between the pure inertial navigation
and the fused positioning trajectory in the YOZ plane. The measurement results of pure
inertial navigation diverged under the influence of other errors such as zero drift. The
measured value of the fusion algorithm had some deviation and finally converged to a
small error value.
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Table 2. The comparison of error before and after sensor fusion. 

Number 
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Furthermore, Table 2 shows the statistical data of the starting point and ending point
error of six groups of experiments of the two algorithms before and after fusion. The error
here was measured by the distance between the two points. The average error before fusion
was 0.13 m, and the average error after fusion was 0.029 m. The overall experimental effect
after fusion in this paper was improved by 77.7%.

Table 2. The comparison of error before and after sensor fusion.

Number
Pure Inertial Odometer Fusion Algorithm Odometer

Origin Destination Error Origin Destination Error

1 X: 0.01, Y: 0.04 X: −0.03, Y: −0.05 0.041 X: 0.03, Y: 0.04 X: 0.01, Y: 0.05 0.022
2 X: 0.02, Y: 0.01 X: −0.10, Y: −0.12 0.177 X: 0.02, Y: 0.04 X: 0.04, Y: 0.06 0.028
3 X: 0.05, Y: 0.03 X: −0.13, Y: −0.04 0.193 X: 0.07, Y: 0.02 X: 0.03, Y: 0.05 0.05
4 X: 0.03, Y: 0.02 X: −0.03, Y: −0.04 0.085 X: 0.06, Y: 0.02 X: 0.05, Y: 0.04 0.022
5 X: 0.04, Y: 0.01 X: −0.09, Y: −0.05 0.143 X: 0.02, Y: 0.04 X: 0.03, Y: 0.07 0.032
6 X: 0.02, Y: 0.05 X: −0.03, Y: −0.08 0.139 X: 0.05, Y: 0.04 X: 0.07, Y: 0.03 0.022

Average error 0.130 0.029

4.2.2. Robustness Experiments under Dynamic Disturbances

In this experiment, the fusion localization algorithm proposed in this paper was com-
pared with the ORB-SLAM2 algorithm of binocular pure vision under dynamic interference.
We had people try three types of exercise: running, continuous walking, and intermittent
walking. In the experiments of running and continuous walking, there was no significant
difference between the fusion localization algorithm and the pure visual localization method,
and both of them had certain robustness to interference. However, in the experiment of
intermittent walking, the difference between the two algorithms was particularly obvious. As
shown in Figure 11, the inspection robot was made to complete the rectangular movement
of 4 × 5 m. At the same time, the experimenter continuously interfered with the binocular
camera in the X-axis direction by intermittent walking (stopping for 20 s every 0.5 m).
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From the experimental results, it can be found that the results of the pure visual
positioning system were severely deformed, and the scale and ideal value were very
different. However, the fusion localization algorithm proposed in this paper was affected
by dynamic interference, and there was a certain degree of error in the localization scale, but
the overall localization trajectory still maintained a smooth and flat rectangular trajectory.
As shown in Figure 12, we used pure visual positioning of the ORB algorithm for image
feature extraction, which can be found in the process of intermittent walking, and tester
shoes and head were also full of the feature points; the ORB algorithm can extract all
feature points in the environment, but not the difference between dynamic and non-rigid
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or static, rigid wall. When the visual sensor was still and the tester moved to another
position, the visual sensor still misinterpreted the dynamic, non-rigid person as a static
wall, resulting in a false displacement. As can be seen from the experimental results, the
purely visual positioning method produced more displacement in the X-axis direction,
and the own rotational motion of robot at the turning point led to more severe errors. The
positioning method in this paper adopted the multi-sensor fusion method, and the inertial
navigation measured the motion of the inspection robot itself, which was not affected by
environmental changes. Therefore, the positioning trajectory was close to the ideal value,
and the effect was better than the pure visual positioning method.
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4.2.3. Robustness Experiments with Missing Textures

In this experiment, the fusion localization algorithm proposed in this paper was compared
with the ORB-SLAM2 algorithm of binocular pure vision in the absence of texture. The
experimental environment simulated the underground complex, and the indoor environment
with weak texture was selected for the experiment. As shown in Figure 13, when the inspection
robot was displaced to the first corner, because the building facing smooth materials leveled off,
the mirror was serious, and in some places, there was an overexposed photo; at the same time,
in the face of the white wall texture feature not being obvious, on the basis of the characteristic
point of the ORB-SLAM2 pure visual positioning method, it did not have enough ability to
extract feature points in the space, and thus the whole algorithm failed to locate.
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As shown in Figure 14, the positioning method used in this paper relied not only on the
currently collected image information but also on the image information before history in
image processing, which is more robust than the feature point method relying on the current
image each time. At the same time, due to the existence of inertial navigation, the algorithm
can ensure the normal operation of the whole positioning system by measuring the own
movement of the robot, even if there are some moments when the texture is missing.
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5. Conclusions

In this paper, the traditional visual SLAM algorithm was improved for the characteristics
of large personnel flow and sparse background texture in an underground complex. In order
to solve the problem that it is difficult for the front end to extract feature points from weak
texture and the tracking is easy to be lost, the Harris algorithm with a stronger ability to extract
feature points was introduced, which was combined with optical flow pyramid tracking to
enhance the robustness of the visual positioning system. Various error sources of IMU were
analyzed, and the performance of the Euler method and median method on dynamic model
discretization was compared through simulation, and the Euler method with shorter time
consumption was selected. Finally, the non-uniform rational B-spline was used to solve
the problem of the non-synchronization of sensors with different frequencies, and the tight
coupling between the vision sensor and IMU was realized. In the real physical environment,
the research group simulated the environment of an urban underground complex, and the
experiment showed that the fusion algorithm presented in this paper had better experimental
results in terms of positioning accuracy, anti-dynamic interference, and robustness of weak
texture than the positioning method using inertial navigation or vision only.
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