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Abstract— This paper proposes a computational framework
for automatically optimizing the shapes of patient-specific tissue
engineered vascular grafts. We demonstrate a proof-of-concept
design optimization for aortic coarctation repair. The computa-
tional framework consists of three main components including
1) a free-form deformation technique exploring graft geome-
tries, 2) high-fidelity computational fluid dynamics simulations
for collecting data on the effects of design parameters on objec-
tive function values like energy loss, and 3) employing machine
learning methods (Gaussian Processes) to develop a surrogate
model for predicting results of high-fidelity simulations. The
globally optimal design parameters are then computed by multi-
start conjugate gradient optimization on the surrogate model.
In the experiment, we investigate the correlation among the
design parameters and the objective function values. Our results
achieve a 30% reduction in blood flow energy loss compared
to the original coarctation by optimizing the aortic geometry.

I. INTRODUCTION

Among the leading causes of newborn death, congenital
heart disease (CHD) affects nearly 40,000 infants in the US
per year with approximately 25% of neonates born with
CHD requiring invasive or other potentially lifesaving treat-
ments [1]. Aortic arch anomalies such as aortic coarctation
and hypoplasia often require early surgical intervention to
preserve normal systemic perfusion [2].

The current surgical repair techniques of aortic coarctation
include 1) resection with end-to-end anastomosis, 2) patch
aortoplasty, 3) interposition grafts, and 4) subclavian flap
aortoplasty. In cases of significant associated arch hypopla-
sia, an aortic arch reconstruction may be required, which
combines several of the techniques above [3], [4]. The
current techniques can result distortion of the aortic arch
shape, and is limited by the available synthetic materials such
as polytetrafluoroethylene (PTFE) or polyester (Dacron R©)
which do not grow with the child and thus require revision
or replacement [5]. In addition to poor growth, these syn-
thetic materials also demonstrate calcification and stenosis,
requiring multiple interventions in the long term that hinder
their application in pediatric aorta surgery. Biocompatible
materials, including autografts and allografts, works well
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although they have a limited availability and can be prone
to dilation over time [6].

Tissue engineered vascular grafts (TEVGs) offer a promis-
ing strategy for overcoming such complications. Using an
FDA approved biodegradable scaffold, such as poly-L-lactide
(PLLA) and poly-e-caprolactone (PCL), the patient’s own
cells can proliferate and provide physiologic functionality
and growth over time [7]. To create TEVGs with custom
shapes, electrospun nanofibers can be deposited on a 3D
printed stainless steel mandrel [8]. For example, our work
demonstrated feasible 3D-printed TEVGs in venous circula-
tion using a sheep model [9]. The feasibility of customizing
the shapes of TEVGs opens the door to designing patient-
specific grafts that achieve optimal patient outcomes dur-
ing aorta repair. Surgical intuition can be combined with
computational predictions of hemodynamics to achieve an
optimized, durable, patient-specific design for aortic arch
repair.

Our research objective is to develop a computational
framework for automatically designing optimal shapes of
patient-specific TEVGs for aorta surgery. In our prior re-
search [10], [11], we have investigated manual design opti-
mization of patient-specific graft geometry by using compu-
tational fluid dynamics (CFD) and computer-aided design
(CAD) software. Custom design tools for graft geometry
manipulation were developed by other research groups for
the ease of manual design process [12], [13]. Nonethe-
less, considering manual design optimization involves time
consuming trial-and-error process to achieve suboptimal
hemodynamic performance, gradient-based and derivative-
free design optimization algorithms in combination with
CFD analysis have been used to optimize 2-D/3-D ideal
models of coronary artery bypass grafts (CABGs) [14],
[15], [16]. By using the ideal model assumption, shape
parameterization and optimization of graft geometry can be
significantly simplified. Different from CABGs, aortic grafts
cannot be treated by using ideal models due to the variety
of aorta shapes. Therefore, automatic design optimization of
patient-specific aortic graft for clinical needs is still an open
problem.

In this paper, we demonstrate a computational framework
for automatically optimizing the shape of patient-specific
tissue engineered vascular grafts. We apply this computa-
tional framework to a case of aortic coarctation for proof-
of-concept. By controlling a set of design parameters to
deform a cylindrical lattice applied on a patient’s native aorta
model, various geometric shapes are generated for computing
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Fig. 1. Illustration of aorta model preparation and computational framework of design optimization. (A) 3D contrast-enhanced magnetic resonance
angiography (MRA) of aorta. (B) Slices of the MRA dataset for 3D aorta model reconstruction. (C) Region of interest for design optimization (red circle)
and boundaries for numerical computation. (D) Illustration of the shape deformation method. (E) Displacement patterns of control points by varying a and
b in δi,j,k . (F) Computational framework for automatic design optimization.

values of the objective function by CFD simulation. Instead
of using commercial CFD software, we employ an open-
source CFD solver (OpenFOAM) [17] which is seamlessly
integrated in our computational framework. Based on the
observation data from CFD simulation, the hemodynamic
surrogate model for each patient’s aorta is trained by using
Gaussian process regression. The globally optimal design
parameters can be found by running a multi-start conjugate
gradient optimization on the surrogate model for computing
the final geometric shapes of the TEVGs. The primary
contributions of this paper include: 1) demonstration of an
automatic optimization pipeline for designing TEVGs; 2) an
effective freeform deformation method for representing and
exploring the shape of aortic grafts; and 3) online training
and optimizing the hemodynamic surrogate model to identify
the optimal design parameters.

II. METHOD

Fig. 1 shows the preparation of a patient’s native aorta
model and the computational strategy for design optimiza-
tion. Contrast-enhanced magnetic resonance angiography
(MRA) data as shown in Fig. 1A was used to build a 3D
virtual model of the aorta through a segmentation process,
in which a sequence of spatially distributed slices of MRA
dataset were created as shown in Fig. 1B. The shape defor-
mation method (Fig. 1D) is applied on the smoothed 3D aorta
model (Fig. 1C) to explore optimal shapes of the coarctation
area.

The objective of this proof-of-concept design optimization
is to minimize the energy loss J of blood flow between the
inlet and the outlet shown in Fig. 1C by deforming the shape

of the coarctation area. The design space D includes design
parameters to control deformation of the cylinder lattice and
subsequently control the shape of the aorta model. Fig. 1F
demonstrates the computational framework of automatic
design optimization. A computationally low-cost Gaussian
process surrogate model is developed to replace the high-
fidelity CFD for approximating the objective function J(x).
The training data of the surrogate model are obtained by
running a limited number of high-fidelity CFD simulation as
shown in the yellow blocks of Fig. 1F. By applying gradient-
based optimization on the surrogate model, the globally
optimal design parameters xo can be found. The optimal
shape of graft for the area of aortic coractation is restored
by feeding xo to the shape deformation algorithm. In the
following, we discuss the major components of our method
in detail.

A. Graft Shape Deformation and Parameterization

The shape deformation algorithm for graft optimization
in this paper is based on free-form deformation (FFD) [18].
The main idea of FFD is to deform an object by warping
the space that contains the object. We construct a cylinder
lattice as shown in Fig. 1D to cover the space where
the coarcation is located. Given a set of arbitrary global
coordinates (r, θ, z) in the space, the reference coordinates
(r̂, θ̂, ẑ) of the unit trivariate space can be calculated by
r̂ = r/|R|, θ̂ = θ/|Θ|, ẑ = z/|Z|.

The warping of the space is formulated in the mapping
function Xm(r̂, θ̂, ẑ) with nodes Pi,j,k on the lattice as
control points.
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Fig. 2. Illustration of the shape deformation algorithm with randomly
sampled design parameters x = (α, β, a, b). (A) Native model
xA = (0◦, 0◦, 0mm, 0). (B) xB = (27.6◦, 5.3◦, 7mm,−0.24).
(C) xC = (75.4◦, 9.1◦, 5mm, 0.24). (D) xD =
(304.6◦, 3.7◦, 3.5mm,−0.1). (E) xE = (54.2◦, 9.7◦, 2.1mm, 0.04).
(F) xF = (201.3◦, 20.8◦, 4.5mm,−0.15).

Xm =

nr∑
i=0

nθ∑
j=0

nz∑
k=0

Bi,nr (r̂)Bj,nθ (θ̂)Bk,nz (ẑ) (Pi,j,k + δi,j,k) , (1)

where r = i/nr, θ = j/nθ, z = k/nz . nr, nθ and nz are the
number the control points in directions of R,Θ and Z with-
out counting the local origin point. Bi,nr (r̂), Bj,nθ (θ̂) and
Bk,nz (ẑ) are the nr-order, nθ-order and nz-order Bernstein
basis polynomial functions. We introduce a vector parameter
δi,j,k with dimensions of 3× (nr+1)× (nθ+1)× (nz +1)
for adding a spatial offset on Pi,j,k.

The coordinates of Pi,j,k are represented as

Pi,j,k = X0 +
i

nr
R +

j

nθ
Θ +

k

nz
Z, (2)

where 0 ≤ i ≤ nr, 0 ≤ j ≤ nθ, 0 ≤ i ≤ nz . In this study,
we set nr = 1, nθ = 14, nz = 20, |R| = 18mm, |Θ| = 2π
and |Z| = 20mm for creating a cylinder space to contain
the segment of coarctation.

To efficiently explore the geometry deformation at the
coarctation region, our strategy is to move the control points
in groups instead of controlling all the dimensions of δi,j,k
individually. Considering the shape of the coarctation area,
an intuitive shape exploration is to stent this area. Therefore,
in this paper we design a deformation function in (3) to move
the control points radially away from the centerline Z of the
cylinder lattice.

δ1,j,k = a

(
1−

(
2k

nz
− 1− b

)2
)8

(3)

The profiles of (3) are illustrated in Fig. 1E. This function
is only dependent on node index k in Z direction, applies
to the control points on the cylinder wall (red nodes in
Fig. 1D), and moves the control points in R direction. We
set δ0,j,k to zero for keeping the blue nodes (Fig. 1D) along
the centerline unmovable. The parameters a and b are used
to adjust the peak magnitude and offset for various patterns
of deformation.

In order to provide more freedom on exploring the shape
deformation, we introduce two additional parameters α and
β, which control the direction of the cylinder lattice’s Z-axis

around T shown in Fig. 1C-D. T is a tangent vector of the
aorta model’s centerline at the point po.

Fig. 2 demonstrates shape deformation of the aorta model
by controlling the design parameters x = (α, β, a, b) ∈
D ⊂ R4. The design space D in this study is set as
a ∈ [0, 10mm], b ∈ [−0.25, 0.25], α ∈ [0◦, 360◦] and
β ∈ [0◦, 10◦] according to the specific model tested in this
paper. The following task is to find a set of design parameters
that yield the minimized energy loss of blood flow.

B. Gaussian Process Surrogate Model and Optimization

The energy loss of blood flow is represented by inlet-
outlet pressure drop J(x) for each deformed aorta model
in this proof-of-concept study. The measurement of J(x)
involves running computationally expensive CFD simulation
that prohibits searching for all different combinations of
design parameters. An alternative solution for this task is
to train a surrogate model Ĵ(x) to approximate the exact ob-
jective function J(x) by using Gaussian process regression:

Ĵ(x) = γ̂ + cT (x)C−1(J− γ̂f), (4)
where C represents the covariance matrix with the kernel
function modeled as

C(xi, xj) = exp

(
−

ns∑
s=1

θs|xi − xj |2
)
. (5)

c(x) is the covariance vector
c(x) = [C(x, x1), ..., C(x, xns)]. (6)

θs denotes correlation parameters. J represents the vector
of ns observed pressure drops (ns = 50 in this study)
which are obtained by using the method in Section II-C. xi
(i = 1, ..., ns) represents the sampled design parameters by
using Latin hypercube sampling (LHS) method. f is a unity
vector with a dimension of 1 × ns. γ̂ is obtained by using
generalized least squares as

γ̂ = (fTC−1f)−1fTC−1J. (7)

The objective of design optimization is to find xo for
minimizing Ĵ(x), which is mathematically described in (8).

xo = argmin
x∈D

Ĵ(x) (8)

In order to search globally optimal design parameters, we
employ a multi-start conjugate gradient method on Ĵ(x) by
sampling sets of design parameters in the design space D.
Then we use xo as the input of the shape deformation algo-
rithm to apply on the native model of aorta. An optimized
TEVG can thus be manufactured by 3D electrospinning
based on the shape of the optimally deformed model.

C. High-Fidelity CFD Computation

The hemodynamics of the aorta is governed by the Navier
Stokes equation and the continuity equation in (9) and (10)
based on the following assumptions for ensuring reason-
able computation time: 1) blood was modeled as Newto-
nian, incompressible laminar flow with constant viscosity of
µ=3.5× 10−3 Pa · s and a density of ρ=1.06× 103 kg ·m−3,
2) the aorta geometry was modeled with rigid walls.
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Fig. 3. Design optimization results. (A) Correlation matrix of design parameters (α, β, a, b) and pressure drop Ĵ . (B) Pressure field distribution on the
native aortic model. (C) Pressure field distribution on the optimized aortic model.

TABLE I
SELECTED 5 RESULTS OF MULTI-START OPTIMIZATION

α(◦) β(◦) a(mm) b Ĵ (mmHg)
1 222.43 4.56 4.08 -0.14 6.65
2 296.21 3.80 4.27 -0.07 6.71
3 241.84 5.06 4.12 -0.15 6.69
4 136.33 2.46 4.07 -0.14 6.68
5 359.41 4.42 4.42 -0.11 6.67

u · ∇u+
∇p
ρ
− ν∇2u = 0 (9)

∇ · (ρu) = 0 (10)

In equations (9) and (10), u is the fluid velocity vector, p is
the velocity pressure, and ν = µ/ρ is the kinematic viscosity.
As illustrated in Fig. 1C, the boundary conditions of the inlet
(peak flow rate 0.96m · s−1), outlet (pressure 9119.1Pa),
SA1 (mass flow rate 0.087 kg · s−1), SA2 (mass flow rate
0.048 kg · s−1), and SA3 (mass flow rate 0.057 kg · s−1)
were measured by MRI and invasive cardiac catheterization.
The blood flow velocities at the aorta wall were assumed as
zero.

To solve the velocity field and the pressure field in
the computation domain, we employ OpenFOAM software
package for meshing deformed aorta models (using snappy-
HexMesh mesher), solving (9) and (10) (using SimpleFoam
solver), and extracting the inlet-outlet pressure drop J from
the computed numerical results. The computational frame-
work proposed in this paper supports parallel computation
of the high-fidelity simulation for different deformed models,
which can significantly reduce the total computation time.

III. RESULTS

A. Configuration and Computation Performance

The proposed computational framework of design opti-
mization was written in C++ programming language, and
run on a PC with the operating system of Ubuntu 18.04 LTS.
The PC is with the configuration of Intel R© CoreTM i9-9900
CPU @3.10GHz and 32GB random-access memory.

The total computation time of the automatic optimization
shown in Fig. 1F mainly depends on the number of com-
puting cores for parallel computation (8 cores were used for

this work), the number of high-fidelity CFD observation for
training the surrogate model (ns = 50), the number of mesh
cells for each deformed model (about 0.5 million), the type
of blood flow for CFD computation (laminar flow), and the
dimension of design space D (D ⊂ R4). In this work, it took
about 3 hours and 20 minutes to complete the computation
of design optimization.

B. Optimization Results

For searching the globally optimal design parameters,
we sampled 20 sets of design parameters as the initial
guesses for multi-start optimization on Ĵ . Table I shows the
optimized design parameters that yield 5 smallest Ĵ values.
The optimized Ĵ falls in the short range from 6.65mmHg
to 6.71mmHg. To investigate the correlations among Ĵ and
the design parameters (α, β, a, b), we illustrate the correlation
matrix in Fig. 3A. The cold colors represent negative correla-
tion and the warm colors represent positive correlation. The
numbers shown in the grid are the correlation coefficients.
The data show α, β and a have negative correlations with
Ĵ , while b has positive correlation with Ĵ . The design
parameters α and a show stronger correlations with Ĵ than
β and b.

Fig. 3B and Fig. 3C show the anterior and posterior
coronal views of the native and optimized aorta models.
We demonstrate the comparison of pressure field distribution
for the native and optimized models. The optimized model
was generated by using the design parameters in the first
row of Table I. The deformation areas are highlighted in
the yellow rectangles. The pressure field maps are rep-
resented by using kinematic pressure p/ρ with the unit
of m2 · s−2. We extracted the inlet-outlet pressure drops
and converted kinematic pressure m2 · s−2 to the clinically
relevant pressure unit mmHg as Jn = 9.54mmHg and
Jo = 6.69mmHg respectively. The results show about 30%
energy loss reduction of blood flow in aorta by optimizing
the aortic geometry at the coractation area.

Although significant improvement in energy loss was
achieved in the optimized aorta graft, we can see that the
coarctation was not completely fixed in Fig. 3C. We think
the design space dimension used in this paper should be
further increased by reformulating (3) to gain more freedom
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for exploring the remaining coarctation area, which will be
conducted in our future study.

IV. CONCLUSION

This paper provided an initial evidence to demonstrate the
effectiveness of our automatic shape optimization method for
TEVG design. We proposed a shape deformation method
with a set of design parameters to explore optimal graft
shapes. To identify the optimal design parameters, we op-
timized a Gaussian process surrogate model, which is gen-
erated by using a set of observation data from high-fidelity
CFD simulation. The optimization results showed about 30%
energy loss reduction of blood flow in the optimized aorta
model. According the preliminary results, we found using
four design parameters for the graft shape exploration was
unable to fully remove the coarctation area. An improvement
on the dimension of the design space is needed.

In addition, the laminar flow assumption used in this paper
simplified the numerical computation of (9) and (10) to
ensure reasonable computation time while still capable of
capturing important fluid dynamic characteristics. But the
Reynolds number of blood flow in aorta is typically greater
than 2100 that suggests turbulent flow. In the future study,
we plan to investigate if the different assumptions result in
significant differences of optimized grafts.
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