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Abstract— Real-time visual localization of needles is nec-
essary for various surgical applications, including surgical
automation and visual feedback. In this study we investigate
localization and autonomous robotic control of needles in the
context of our magneto-suturing system. Our system holds the
potential for surgical manipulation with the benefit of minimal
invasiveness and reduced patient side effects. However, the non-
linear magnetic fields produce unintuitive forces and demand
delicate position-based control that exceeds the capabilities
of direct human manipulation. This makes automatic needle
localization a necessity. Our localization method combines
neural network-based segmentation and classical techniques,
and we are able to consistently locate our needle with 0.73 mm
RMS error in clean environments and 2.72 mm RMS error in
challenging environments with blood and occlusion. The aver-
age localization RMS error is 2.16 mm for all environments we
used in the experiments. We combine this localization method
with our closed-loop feedback control system to demonstrate
the further applicability of localization to autonomous control.
Our needle is able to follow a running suture path in (1) no
blood, no tissue; (2) heavy blood, no tissue; (3) no blood, with
tissue; and (4) heavy blood, with tissue environments. The tip
position tracking error ranges from 2.6 mm to 3.7 mm RMS,
opening the door towards autonomous suturing tasks.

Index Terms— Computer Vision for Medical Robotics; Needle
Localization, Image Segmentation; Magnetic Manipulation;
Autonomous Control; Surgical Robotics; Suture Needle

I. INTRODUCTION

A surgical environment contains many unstructured el-
ements that make localization of surgical tools difficult.
In such conditions, the localization task is the surgical
equivalent of “finding a needle in a haystack”, and accurate
localization is necessary for manual, tele-operated robotic,
and autonomous surgical tasks. This broad localization con-
cept is useful for aiding the visualization of small surgical
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Fig. 1: Illustration of suture tasks in a minimally invasive surgery
and our proof-of-concept magnetic suture system. (A) Anastomosis
of the small intestine by using a conventional suture needle. (B) The
physical magnetic suture system used in this study. (C) Magnetic
suture needle in a simulated cluttered surgical site with blood and
tissue. (D) The magnetic suture needle used in this study.

tools during both manual and robotic surgery, as well as for
surgical operations with wireless magnetic robot systems.

Magnetic robotic systems use magnetic fields to rapidly
convey force and torque to rigid magnetic bodies. These
magnetic bodies effectively become wireless end effectors of
the magnetic systems. Since these magnetic end effectors can
exert torques and forces, their usage towards multi-degree-
of-freedom, minimally invasive surgical operations has been
explored with many applications, including biopsy, targeted
drug delivery, and capsule endoscopy [1]–[3]. Additionally,
magnetic manipulation removes the need for on-board power
supplies, thus reducing surgical tool size. Implementing mag-
netic suturing operations may reduce invasiveness, increase
patient comfort, reduce hospital stays, and hasten recovery.

The nonlinear nature of magnetic actuation systems makes
direct human manipulation of magnetic robots challenging.
Even worse, excessive use of magnetic force or torque
could cause tissue damage or complications. To prevent
undesired outcomes and assist surgeons with manipulating
magnetic robots, reliable localization algorithms combined
with closed-loop feedback systems could be integrated, mov-
ing the process closer to autonomous suturing tasks by using
visual servoing via camera imaging [4].

For a reliable autonomous suturing task, two sub-
algorithms are crucial: (1) an accurate localization/sensing of
the state of the suturing needle, and (2) a control algorithm
for calculating the desired forces and torques on the suturing
needle. Inaccurately detecting the state of the suturing needle
may deceive the control algorithm and result in undesired or
unsafe forces or torques being applied. Accurate localization
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and control with high closed-loop feedback rates in clut-
tered environments remains a challenge. Many localization
practices are limited to occlusion-free environments, which
oversimplify clinical scenarios [5].

Our localization goal is to track the three components
of the needle’s state (x, y, θ) rapidly in visually complex
and cluttered environments for real-time closed-loop control
applications. One known localization method makes use
of feature-detection approaches to extract specific features
of the needle, such as the boundaries between different-
colored sections [6]. Such feature-detection is more prevalent
in the broader field of surgical tool tracking [7], as more
complex surgical tools have more easily identifiable natural
features [8]. Our needle has few natural features, and direct
deep learning methods to predict needle position typically
produce a bounding box or region containing the tool, rather
than our desired precise tool pose [9], [10]. In segmentation
studies, color information is often used to separate the needle
from the background [11], [12]. However, during surgical
procedures, blood may discolor the needle, and specular
reflection from tissue may mimic metallic reflection from the
needle. In these cases, color information is insufficient to dis-
tinguish needle pixels from background pixels. Other work
uses machine learning methods, such as random forests [13]
or neural networks [14], to learn segmentation models that
incorporate information from neighboring pixels. However,
these works result in segmentation masks with considerable
noise and generally rely on the distinct shape of a curved
needle. Numerous features in the environment incidentally
resemble our straight needle and can therefore cause false
detections. The conventional design for segmentation using
neural networks relies on an encoder-decoder architecture,
where the image is first forced into an embedding space using
convolution layers, and then extracted into a segmentation
mask. This is the framework for several popular architectures
such as Deeplab [15] and U-Net [16].

Applying neural networks to real-time control requires low
latencies, and thus minimal end-to-end neural network for-
ward propagation times. One way to speed up computation is
to replace the usage of full convolutions, which are relatively
expensive to perform, in the encoder. Dilated convolutions
have been attempted [17]. Recently, depthwise-separable
convolutions with separate depth and space convolution
stages have been used by [18] and LWANet [19]. These op-
erations greatly decrease the number of required operations,
driving latencies lower. LWANet utilizes MobileNetV2 [20],
which also makes use of depthwise-separable convolutions,
as its encoder, in addition to making use of other efficient
elements such as attention fusion blocks.

In this paper, we present a novel needle localization system
feeding low-latency neural network-based segmentation into
a classical localization method utilizing RANSAC [21], thus
improving on our previously presented localization [22]. Our
neural network emphasizes speed, accuracy, and a detailed
output which combines a high-resolution segmentation mask
and additional information in the form of a classification
output. The proposed system maintains accurate localiza-

Fig. 2: Magnetic suture needle control scheme.

tion in the presence of blood and tissue occlusion, while
maintaining real-time performance. We present experiments
demonstrating the improvement on prerecorded videos and in
a needle control task. The presented localization algorithm,
combined with a real-time closed-loop feedback control
scheme, brings us closer to true magnetic suturing operations.

II. MAGNETIC SUTURE SYSTEM SETUP AND NEEDLE
CONTROL SCHEME

Our physical magnetic suture system shown in Fig. 1B
was previously presented in [5], [22]. Here, we implement
an updated needle design that relies on a hypodermic needle
filled with NdFeB micromagnets. Specifically, we consider
the problem of controlling the motion of a 22 gauge hypo-
dermic needle (ID = 0.413mm, OD = 0.7176mm, length =
23.5mm, EXEL International 22Bx1) with internally embed-
ded NdFeB permanent magnets (0.3mm diameter, 0.5mm
length, 42 inserted magnets, axially magnetized). The NdFeB
magnets were sealed in place with glue. The needle is
submerged in a viscous medium with simulated blood and
tissue, inside a Petri dish (diameter = 85mm). Imaging was
performed at 60 frames per second (FPS) using a FLIR
Blackfly camera (BFS-U3-13Y3C-C) with a resolution of
1280 × 1024 pixels. During activation, maximum currents
of 10A were measured by current transducers (CR5411S-30
AC/DC Hall Effect Current Transducer, CR Magnetics, Inc.).
All the experiments were run on a GeForce RTX 2060, with
an average localization and control loop time of around 50
milliseconds. The workspace was illuminated by a ring light
mounted on a custom 3D-printed adapter.

We designed a closed-loop needle control scheme as
shown in Fig. 2, which consists of a real-time needle localiza-
tion method for dealing with cluttered surgical environments
(Sec. III), a needle controller, and a nonholonomic model
of the needle for computing the desired current inputs of the
electromagnets and actuating the needle to follow a reference
trajectory (Sec. IV).

III. NEEDLE LOCALIZATION

Our needle localization aims to accurately detect the
position and orientation of the magnetic suture needle in
cluttered simulated surgical environments in real time. The
framework (Fig. 3A) consists of a pre-processing step, a
neural network based segmentation step, a localization step,
and an error correction step.

A. Needle Segmentation

The speed and accuracy of the needle segmentation are
equally crucial for the success of magnetic suture needle
control. Although LWANet [19] targets fast test performance
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Fig. 3: Framework of magnetic suture needle localization.
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Fig. 4: U-Net architecture for training the segmentation mask and needle tip classification.

with its MobileNetV2 [20] encoder, we found that LWANet
is highly sensitive to hyperparameters, slow to train, and
reduces segmentation resolution too substantially for use.
Since the MobileNetV2 architecture [20] by itself utilizes
depthwise-separable convolutions which require far fewer
GPU operations, we designed a U-Net [16] architecture as
shown in Fig. 4 to achieve faster training speed, better train-
ing stability, low network latency and sufficient segmentation
accuracy at high resolution (512×512 pixels).

Our network consists of five MobileNetV2 [20] encoder
blocks, each of which halves the width and height of the im-
age, but increases the number of features to levels prescribed
by MobileNetV2 (Fig. 4). Following the encoder blocks is an
equal number of decoder blocks, each of which doubles the
width and height while decreasing the number of features.
Each decoder block consists of 2 repetitions of {convolution,
batch normalization, rectified linear unit (ReLU)}. A skip
connection connects each encoder block to the corresponding
decoder block, allowing the decoder to consider information
from multiple resolution levels. The final layer adds a convo-
lution reducing the number of features to one. After applying
a sigmoid function, this yields our segmentation mask for
either ‘needle’ or ‘background’ (Fig. 3D).

In order to perform suturing tasks, we need the full needle
orientation. To robustly localize the needle during partial
occlusion we need to know if the needle is obscured on
one or both of its ends. Therefore, we require both the seg-
mentation mask and some data from the neural network. We

could train a separate neural network for this classification
task, but that would entail running two neural networks on
each frame, increasing our latency. Additionally, it is likely
that information useful for segmentation will also inform
classification. We therefore connect the output of the encoder
to an additional classification ‘head’. We use global average
pooling to interpret each feature by itself, then add a fully
connected layer with a sigmoid per output. We train the
network to produce additional information about the needle:
angle up and angle left, which assist in localizing the angle
of the needle, and tip visible and tail visible, which assist in
localizing the position of the needle during partial occlusion.
These values are described further in Sec. III-D.

We train the network’s segmentation head using dice loss
[23], emphasizing small classes (such as our needle) relative
to the whole image and binary cross-entropy loss for the
classification head. We combine the two (equal weights) into
one loss, using a learning rate of 0.0001 and a Root Mean
Square Propagation optimizer running for 20 epochs.

B. Pre-processing

Images are collected at 60 FPS and for each sampled
frame (Fig. 3B), the image is cropped to 1024×1024 pixels
(Fig. 3C), which is the approximate size of the Petri dish in
our sample dataset (see Sec. V-A). The image is then masked
by a circle with the actual radius of the dish. Both the imag-
ing cropping and masking are centered at the dish center,
which is manually calibrated together with the radius. Images
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Algorithm 1 Construction of final set of needle points

1: Sort clusters in decreasing order by number of points
2: needle points := largest cluster
3: for cluster sets do
4: if cluster 6= largest cluster then
5: d := max(||xc − xn||), ∀xc ∈ cluster, ∀xn ∈
needle points

6: if d < 1.1× needle length then
7: Append cluster to needle points
8: return needle points

are then downsampled to 512× 512 pixels, and normalized
per channel of RGB to a mean of (0.485, 0.456, 0.406) and
a standard deviation of (0.229, 0.224, 0.225), for compati-
bility with pretrained weights distributed by PyTorch [24].
These weights are the result of training a MobileNetV2
network [20] on the ImageNet dataset.

C. Localization

The needle localization method begins by running the pre-
processed image through the segmentation network. We then
apply a debiasing step to correct detectable false negatives.
The segmentation’s most common failure mode is to falsely
identify a linear section of an obstacle boundary as a needle.
Such false positives are consistent in location throughout a
single trial of the needle control and are typically shorter than
a full needle. When the needle is fully visible the localization
method successfully identifies it even when a false needle
is also present because the longest needle-like object is
identified. However, when the needle is partially occluded (as
shown in Fig. 3B), the false needle appears longer than the
unoccluded portion of the real needle and the false needle is
incorrectly identified, as shown in Fig. 3D. To address this,
we maintain a bias image, which identifies pixels that are
consistently classified as needle pixels by the segmentation
but are filtered out as false positives by the post-processing
steps. For each sample the false positive image is generated
by subtracting the predicted needle pixels, as identified by the
localization framework, from the segmented image (Fig. 3D).
The bias, shown in Fig. 3E, is computed as the pixel-wise
exponential moving average of the false positive image.
Pixels where the bias term is greater than 0.1 are subtracted
from the segmentation mask in the debiasing step.

The points in the debiased segmentation mask (Fig. 3F)
are clustered using the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [25] clustering algo-
rithm. Clusters with too few points are discarded as outliers,
as are points identified as outliers by DBSCAN. We compute
the threshold Nmin for discarding a cluster as the square of
the needle width. We observe that the segmentation mask
reliably produces clusters whose width is approximately
equal to the needle width, and this threshold ensures the line
detection will never receive a cluster whose longer direction
is along the needle width. If no clusters remain, localization
terminates and returns No Detection.

The set of points belonging to non-discarded clusters
is passed to the random sample consensus (RANSAC)

method [21] for line detection. Points identified as outliers by
RANSAC are removed from their respective clusters. If fewer
than Nmin points are identified as inliers, the localization
terminates and returns No Detection. Otherwise the final set
of needle points is constructed according to Algorithm 1.
The result is illustrated in Fig. 3G. Finally, the two extreme
points in the set of needle points along the angle returned
by RANSAC are taken to be the needle endpoints.

D. Error Correction

The localization procedure identifies the needle angle
and visible endpoints, but two ambiguities remain. First,
RANSAC cannot tell the difference between the needle angle
0 ≤ θ < π and the corresponding angle θ′ = θ+π, π ≤ θ′ <
2π. Accurate needle control requires knowing the correct
orientation of the needle. Second, the identified endpoints
may be the true endpoints of the needle or they may be
the points at which the needle disappears under an obstacle.
Proper occlusion handling requires resolving this ambiguity.
We resolve both ambiguities using the outputs from the
segmentation network described in III-A.

angle up and angle left are used to resolve the angle
ambiguity. When the detected angle is closer to 0 or π than to
±π/2, angle left is used to resolve the ambiguity, otherwise
angle up is used. While either of these values on their
own are mathematically sufficient, the network’s accuracy
on angle up suffers when the needle is near horizontal, and
likewise for angle left when the needle is vertical. Choosing
which to consider based on the needle angle avoids using
the network output in cases where it is less accurate.

tip visible and tail visible are used to account for occlu-
sion. When these values indicate both endpoints are visible,
the center is computed based on the average of the endpoints.
However, when only one is visible, the center is computed
based on the location of the visible endpoint, the predicted
angle, and the known needle dimensions. This allows the
needle localization to accurately identify the needle location
even with significant occlusion. In the final case, both
endpoints are occluded and we compute a best guess at the
needle position based on the average of the endpoints.

IV. NEEDLE MOTION CONTROL

This section addresses generation of coil currents to allow
the needle to execute a desired motion plan. In particular,
we design the motion of the needle in a way that would
enable the needle to perform a series of suture patterns, such
as ligation and running sutures. We first describe how the
needle’s motion is affected by the coil currents.

A. Nonholonomic Model

As detailed in [22], and included here for completeness,
we assume a dipole model of interaction between the needle
and the magnetic fields generated by the coils. Under the
dipole model, the magnetic field B generated by the kth coil
at the location of the needle’s center of mass, r = [x, y]T is

Bk = −mk

δ3k
(r̂k − 3d̂kd̂

T
k r̂k)Ik
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where mk is a constant related to the magnetic properties of
the coil, rk is the center location of the coil, r̂k = rk/‖rk‖
is a unit vector. The vector that points from the coil’s center
to the needle’s center of mass is dk = r − rk, the distance
between the coil and the needle is δk = dk/‖dk‖, d̂k =
dk/δk is a unit vector, and Ik is the input current at the coil.

The torque and force experienced by the needle due to
the magnetic fields generated by the coils is given by the
cross product between the needle’s magnetic moment vector
(M(θ) =Mh, where M is a constant related to the needle’s
magnetic properties and h = [cos θ, sin θ]T is a unit vector
pointing in the direction of the tip) and the coil’s magnetic
field, and the gradient of the magnetic potential, respectively,

τ =

4∑
k=1

M(θ)×Bk, F = −
4∑
k=1

∇
(
M(θ)TBk

)
.

The needle motion is assumed to be first-order due to laminar
fluid flow from low Reynolds number and negligible inertia
terms [26], resulting in

ṙ = 1
ct
F, θ̇ = 1

cr
τ

where the coefficients ct and cr map forces and torques to
translational and rotational motion (obtained empirically).

We require that the needle’s translational motion to be
kinematically constrained along the length of the needle,
ensuring the force is applied along the tip of the needle [22].
The nonholomic model becomes[
ṙ

θ̇

]
=

[
hhT Fct

τ
cr

]
=

cos θ 0
sin θ 0
0 1

 g(r, θ)I =

cos θ 0
sin θ 0
0 1

[v
ω

]
where needle’s linear and angular velocity are given by[

v
ω

]
= g(r, θ)I =

4∑
k=1

gk(r, θ)Ik

and where if S is a skew-symmetric rotation matrix,

gk(r, θ) =

 3Mmk

ct

(
2d̂Tk hh

T r̂k+r̂
T
k d̂k−5(d̂

T
k h)

2
d̂Tk r̂k

)
δ4k

Mmk

cr

(hTSr̂k−3hTSd̂kd̂
T
k r̂k)

δ3k

 .
Thus, the gk(r, θ) term, computed in real-time, when multi-
plied by the respective coil currents, will generate the desired
forces and torques, which are directly mapped to linear and
angular velocities of the needle. Given a desired linear and
angular velocity commands (v, ω), the input currents can be
found by employing a pseudo-inverse of the motion vector
field relating these, i.e.,

I = g(r, θ)T
(
g(r, θ)g(r, θ)T

) [v
ω

]
.

B. Tip-Tracking Control

In this work, we are interested in accurately controlling
the tip of the needle through the dish. This will be important
to ensure the tip penetrates tissue at the desired location as
well as avoiding inadvertently damaging surrounding tissue.

To this end, we now derive a tip-tracking controller to allow
the tip of the needle to track a desired reference trajectory.

Let rtip = [xtip, ytip]
T be the position of the tip relative

to the center position of the needle, r, which is provided by
the localization algorithm. As the needle is rigid, the location
of the tip is related to the center via

rtip = r +
`

2

[
cos θ
sin θ

]
where ` is the length of the needle. Differentiating these
expressions, we get that

ṙtip = ṙ +
`

2

[
− sin θ
cos θ

]
ω =

[
cos θ
sin θ

]
v +

`

2

[
− sin θ
cos θ

]
ω

which suggests a unique mapping[
v
ω

]
=

[
cos θ sin θ

− 1
`/2 sin θ

1
`/2 cos θ

]
ṙtip.

Given a differentiable desired reference path rdes(t), we
employ a PD control strategy, with the gains being tuned
separately for categories A,B,C and D, to enable tip tracking

ṙtip = k(rdes(t)− rtip) + ṙdes(t).

C. Motion Design

The reference desired path rdes(t) is designed to test the
controller and localization algorithms at different regions
within the Petri dish and under various visual conditions
as described in the next section. The path is designed to
achieve a back-and-forth motion of the tip, e.g., as required
for a running suture. The path is parameterized in time as

rdes(t) =
{

(t−ti�1)
(ti−ti�1)

(qi − qi−1) + qi−1, t ∈ [ti−1, ti)

where q0, . . . , qm are a sequence of points that define the
shape of the path, ti = ti−1+ ‖qi− qi−1‖/vdes with t0 = 0,
and vdes is the desired speed of the reference point through
the path. The derivative of the path is given by

ṙdes(t) =
{
vdes

(qi−qi�1)
‖qi−qi�1‖ , t ∈ [ti−1, ti)

We set vdes = 0.2mm/s. We choose this speed to take into
account the effects of static and dynamic friction that the
needle experiences during its motion. The points q0, . . . , qm
are selected to mimic a running suture pattern penetrating a
tissue segment in the center region of the Petri dish, making
three passes through the tissue. The tissue thickness used
in the experiments is around 5 mm. The reference path and
tracking performance are illustrated in Fig. 8.

V. EXPERIMENTAL SETUP

We created a simulated surgical site in the Petri dish
using fake blood (Liquid Latex Fashions Inc.) and synthetic
tissues (Abdominal Tissue Plate, SynDaver Inc.) to collect
datasets for training the segmentation network and test the
localization method and the needle control performance.
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Fig. 5: Example datasets for training segmentation network.

A. Dataset Preparation for Training Segmentation Network

Various simulated surgical site conditions were set up by
combining categories of different blood densities, with or
without tissue occlusion, different fluid viscosity, and differ-
ent illumination conditions (Fig. 5). For each condition, we
recorded the magnetic needle motion created using manual
joystick control to execute a random path [5].

Each training video was recorded at 60 FPS, then 75%
of them were downsampled to 4 FPS due to lack of internal
variation. The needle location and orientation in each training
dataset frame were manually annotated and converted to
ground truth masks. To maximize the variety of training data,
we augmented it with random rotations from 0 to 2π and hue-
saturation-luminance modifications of ±7.8%, ±11.7%, and
±7.8% respectively. In total we trained on 37,990 frames.

B. Evaluation of Segmentation Network

For the purpose of evaluating performance of the segmen-
tation network and the localization method, we classified our
dataset into 4 exclusive categories: A: no/low blood without
tissue (2509 frames); B: heavy blood without tissue (3495
frames); C: no/low blood with tissue (11812 frames); D:
heavy blood with tissue (13288 frames).

To reliably evaluate the performance of our segmentation
network, we chose to use leave-k-out cross-validation We
divide our 26 training videos into 3 groups and leave out
between 7 and 10 videos for testing each time (the exact
number being balanced based on number of total frames),
training on the remaining videos (between 16 and 19). This
gives a good sense of the performance of the network in
completely unseen environments. We ran our experiments
with a batch size of 4 on a GeForce RTX 2080. We report
average statistics across all folds of the cross-validation.

VI. RESULTS

A. Segmentation Performance

Fig. 6 shows the Intersection-over-Union (IoU), precision,
and recall of the segmentation component and the accuracy,
precision, and recall of the classification component. All re-
sults are averaged over leave-k-out folds, where the network
is tested on completely unseen data.

Note that while precision and recall tend to be competitive,
IoU varies between 53% and 64% on unseen videos, which
appears low. For example, our encoder network achieved
74.7% IoU on the ImageNet dataset [20]. However, we ex-
pect some error is caused by the constraints of our annotation
technique: we do not have pixel-perfect mask annotations,
but rather extrapolate rectangular-needle ground-truth masks
based on human location/orientation estimates and per-video
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Fig. 6: Segmentation performance and classification performance.
Categories A, B, C, D are defined in Sec. V-B.

tissue locations. Additionally, our masks cannot account for
shifts in tissue location over the video, refraction through the
medium changing the apparent size of the needle, heavy glare
from the medium, or motion blur. Furthermore, we note that
our localization process is far more sensitive to recall than
to precision, since the pose detection steps effectively filter
out a large degree of false positives but are less successful
at compensating for false negatives.

The difference between categories A and B (see V-B)
is within 5% on all three segmentation metrics, suggesting
the network is well-equipped to deal with occlusion. The
network also performs as well in category C, with occlusion
but no blood, indicating that it does not rely on the fully
visible needle to categorize needle pixels. As expected,
category D performance is lower due to the difficulty of
combining both blood and occlusion.

Classification performance on needle angle and tip/tail
visibility is shown in Fig. 6, right. Categories A and B show
highly similar results with near 100% accuracy, suggesting
that the network successfully learns to identify the needle
tip. In contrast with segmentation, performance decreases for
categories C and D. This may indicate that the presence of
blood impedes the classification’s ability to identify the tip,
as that information is required for all classification outputs.

B. Localization Performance

We evaluated the localization performance on a 6-core
Intel® Core™ i7-9750H CPU and NVIDIA GeForce RTX
2080 Max-Q GPU. The average time per frame for the entire
localization procedure was 22.37ms, with a 99th percentile
time of 31.04ms, giving an average frame rate of 44.7 FPS.

Fig. 7 shows the performance of the localization in the
four testing categories. The misdetection rate is divided into
No Detection and Incorrect Detection. Both errors can be
corrected for rather easily using filtering over time.

The Incorrect Detection rate is negligible in all but the first
category, where a single video in the dataset contributes 86%
of the incorrect detections. In this video, which is not well
represented in the training data, the needle moves to the very
edge to the dish, causing it to be difficult to detect even for
humans. If this case is excluded the incorrect detection rate is
only 0.22%, similar to the other cases. The No Detection rate
is negligible in the first category. In the presence of tissue
(category B), the No Detection rate increases significantly
to 18%, and heavy blood (category C) moderately increases
the rate to 8.2%. With heavy blood and tissue (category D)
the No Detection rate is at its highest at 29%. This suggests
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Fig. 8: Experimental results of needle tip-tracking control perform-
ing a running suture path using the proposed localization algorithm.

that both occlusion and heavy blood impact the detection’s
success rate separately, and those errors compound when
both conditions are present.

Position errors are divided into “along needle” and “across
needle”, parallel and perpendicular to the needle direction,
respectively. Note that our method is significantly more
accurate in the “along needle” direction: the root-mean-
square (RMS) error in the across direction is significantly
below 1mm in all cases, indicating a high reliability in
correctly identifying a sufficient number of needle pixels
to allow RANSAC to locate the needle line. However, the
RMS error along the needle has higher variance, indicating
a difficulty in determining the precise location of the needle.
As the cases increase in difficulty, the RMS error increases,
representing also an increase in the rate of classification error,
since the classification outputs are used to determine the full
extent of the needle when the tip or tail is occluded.

Needle flips induce many orientation errors, where the
predicted orientation is off 180° from the correct orientation.
This distinct failure mode can be detected and mitigated
by assuming the orientation has not changed more than
180° from the previous frame, and so we report the rate of
orientation flips separately from the flip-corrected orientation
error. Orientation flips occur in approximately 3% of frames

in the first category, 6% with either blood or occlusion, and
reach a maximum of 8% with blood and occlusion. As with
the RMS error across the needle, this likely indicates the
network’s failure to identify the needle tip in more difficult
cases. The RMS orientation error, which is computed on the
flip-corrected orientation, is below 2° in Categories A, B,
and C. The high value for Category A is caused by the same
video which caused errors in Incorrect Detection. Excluding
this video, the RMS orientation error for category A is 0.81°.
Aside from this outlier, the network is highly successful
at detecting orientation once flips are corrected. This again
indicates that our method can successfully detect the needle
line, and that the greatest source of error is determining the
needle’s location along that line. Using a network which
classifies the needle tip and tail separately from the body,
rather than encoding this information in auxiliary outputs,
may improve flip and occlusion handling. However, robustly
detecting true needle endpoints from potentially noisy seg-
mentation masks would require additional complexity.

We also compared the proposed needle localization
method to an unpublished iteration of the method presented
in our previous work [22]. This method can only localize
the suturing needle with no suture thread in the clean Petri
dish with plain white background. Across 2,000 frames in
those conditions the previous method achieves a RMS error
of 6.18mm, compared to only 0.61mm with the proposed
method. With the suture thread present, the previous method
reports “no detection” in 68% of frames compared to 0.64%
for the proposed method, and on the remaining frames
achieves an RMSE error of 11.7mm compared to 0.86mm
for the proposed method. It is clear that the previous method
cannot localize the needle in any environment more complex
than the clean, empty Petri dish.

C. Motion Control Performance

We experimentally validated the use of the proposed
localization method and the controller under 4 types of
environments: No/low blood without tissue, Heavy blood
without tissue, No/low blood with tissue, and Heavy blood
with tissue. The path tracking performance of the needle-tip
for these conditions is provided in Fig. 8. RMS errors in
position tracking are found to be 3.0, 2.6, 3.7, 2.9 mm for the
aforementioned 4 conditions, respectively. One of the main
reasons for such errors is the nonlinear Coulomb surface
friction. Additionally, the dipole model used to compute the
magnetic fields and control efforts is not accurate enough
for the locations far from the center of the dish. We believe
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these two elements are the major contributors to the tracking
errors we observe during the experiments.

VII. CONCLUSION

We present a novel needle localization method, based on
a U-Net modified for speed and additional output combined
with error-correcting classical methods, and a correspond-
ing control method which uses our localization method to
navigate a needle in a lab environment. While our control
method is tailored to our specific magnetic suturing setup,
our needle localization method is applicable to any other
similar contexts.

Our needle localization method is able to localize the
needle in over 70% of frames even in the most challenging
environment we considered, under the presence of blood and
tissue. For this challenging situation, the localization RMS
error is 2.7 mm. For white background with no blood and
the tissue, the average RMS localization error is 0.73 mm.
Overall average of RMS localization error is 2.17 mm. The
needle motion control shows 2.6 to 3.7 mm RMS errors in the
desired tip position over the course of a running suture path.
The reliable localization and control method proposed in
this study would pave the way towards autonomous wireless
suturing tasks. In the future we will extend the system to 3D
by adding additional magnetic z-coils and 3D localization
and will incorporate model prediction (e.g. Kalman observer)
to handle more occlusions for real surgical applications.
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