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Abstract—In this paper, we present an explicit solution to 
adaptive model predictive control for a pneumatic artificial 
muscle (PAM) antagonistic joint trajectory tracking. Compared 
with the traditional model predictive control, the explicit model 
predictive control may pre-calculate the form of optimization 
solution offline, which saves the computation cost and reduce the 
time performance of the system. Meanwhile, we utilize an adaptive 
method to estimate the disturbance arbitrarily, instead of 
maximizing the disturbance directly. Finally, the simulation 
results and running time of the explicit adaptive model predictive 
control (EAMPC) method and the min-max model predictive 
control method are compared, which shows the efficiency of the 
proposed algorithm.  

Keywords—explicit solution, model predictive control, adaptive 
method, PAM, trajectory tracking 

I. INTRODUCTION  

With the development of pneumatic technology, the 
emergence, and application of new pneumatic components are 
increasing, and the PAM is one of the typical representatives. 
PAMs not only have the features of low cost, cleaning and easy 
installation but also own the advantages of high power/mass 
ratio, natural flexibility and mechanical characteristics which is 
similar to the biological muscles. Therefore, pneumatic 
actuators and other pneumatic structures [1]-[4] have become 
new research hotspots with practical research significance. And 
related research contents keep increasing in recent years. 

Currently, the research on PAM mainly focuses on two 
directions: 1. Research on the model of PAM; 2. Research on 
the control of the PAM. The following is the introduction of the 
existing research results of PAMs. In terms of modeling, 
different modeling methods have been used to build PAM 
models. For example, a non-linear quasi-static model was 

developed to accurately capture actuation force versus 
contraction ratio behavior based on finite strain theory in [5]. 
Based on a nonlinear extended state observer in [6], the motion 
mechanism of the PAM was modeled as a dynamic nonlinear 
system. In the paper [7], the Bouc-Wen hysteresis model was 
modified to describe the asymmetric force/length hysteresis of 
the PAM, considering the effect of muscle length on hysteresis 
recovery. In the paper [8], a long short-term memory neural 
network model and an adaptive Takagi-Sugeno fuzzy model 
were proposed to represent the hysteretic relationship between 
PAMs displacement and fluid pressure. In terms of controlling, 
different control algorithms were also successfully applied to 
PAMs. For instance, the paper [9] presented an adaptive 
backstepping controller for a mechanism of pneumatic muscle 
actuators via an adaptive extended state observer. In the paper 
[10], an adaptive proxy-based sliding mode control approach 
was proposed for a class of typical second-order nonlinear 
systems. An efficient hysteresis compensation method based on 
the active modeling control was proposed in the paper [11], in 
order to improve the tracking accuracy of PAMs. And in [12], 
an advanced position-tracking control approach was proposed 
for a PAM system, referred to as an integrated intelligent 
nonlinear controller, Besides, the neural network algorithm was 
also applied in PAM, such as the paper [13], the author has 
proposed a neuroadaptive control method to deal with the 
uncertainty of nonlinear systems. At the same time, the paper 
[14]-[17] also conducted in-depth research on pneumatic 
muscles. 

However, due to the limited range of expansion and 
contraction of the pneumatic muscle and the limited range of 
input of pneumatic valve, the above control algorithms are 
difficult to achieve a good control effect to the actual system. In 
view of the aforementioned reasons, we adopt a modified model 
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predictive control algorithm to control pneumatic muscle in this 
paper. 

Model predictive control, since its launch in the 1970s, has 
developed into a new discipline branch with rich theory and 
practice content. Predictive control is aimed to optimize control 
problems and has been successful in complex industrial 
processes, which has fully displayed its potential for dealing 
with complex constrained optimization control. In recent years, 
there have been many achievements in solving the problem of 
constraint optimization control with model predictive control in 
many fields such as advanced manufacturing, energy, 
environment, aerospace, medical, etc. Besides, the theoretical 
research of model predictive control is becoming more and more 
mature. Such as the paper [18] studied adaptive model predictive 
control of systems with time-varying and potentially state-
dependent uncertainties and proposes an estimation and 
prediction architecture within the min-max model predictive 
control framework. In [19], the author combined the enhanced 
single particle model with first-principles chemical/mechanical 
degradation physics to construct a new battery model to 
accurately predict dynamic intra-cycle capacity fade. And to 
improve the automation of the pre-cooling process, the author 
designed a model predictive control method based on Back-
Propagation neural network as a surrogate inversion model in 
[20]. Meanwhile, the paper [21]-[25] described the latest 
research on model predictive control. 

However, the traditional model predictive control algorithm 
is difficult to be implemented in small systems or embedded 
systems due to its characteristics of iterative update calculation 
which will lead to a huge computation. To reduce the amount of 
computation and speed up the running speed, we present an 
explicit solution to model predictive control for a PAM 
antagonistic joint trajectory tracking in this paper. Explicit 
model predictive control [26]-[28] is a fast model predictive 
control algorithm proposed by Bemporad in 2002 [29]. The 
main idea of the explicit predictive control algorithm is to pre-
calculate optimization solution off-line through the idea of 
multiparametric programming in order to improve the speed of 
online calculation and make the system have better real-time 
performance. In this case, the model predictive control can be 
applied to the system with high sampling frequency and high 
real-time requirement. Applying the explicit model predictive 
control algorithm to the control of PAM joint trajectory tracking 
can not only achieve the optimal control effect but also improve 
the real-time performance of the system. In addition, we will 
estimate the disturbance adaptively. 

The main contributions of the paper are summarized as 
follows: (1) Establish and discretize of PAM model, which 
enables the model to be processed explicitly. (2) Propose the 
adaptive estimator to estimate the disturbance. (3) Apply the 
EAMPC algorithm to a tracking problem of PAM joint, which 
may optimize control inputs and limits the range of inputs and 
state variables. 

The structure of the paper is organized as follows. In section 
2, we model the PAM with disturbance. In section 3, we deal 
with the uncertain disturbance by using the adaptive method 
and discretize the model. In section 4, we apply the EAMPC 
algorithm for the PAM system trajectory tracking analysis. In 

addition, the simulation result is shown in section 5 and the 
conclusion of this paper is given in section 6. 

II. MODEL AND PROBLEM STATEMENT 

The control diagram of the PAM antagonistic joint is shown 
in Fig. 1. And the modeling process of the joint, such as [9], can 
be obtained as follows. 

 
� � � �
� � � �

1 0

2 0

u

u

u t u k u t

u t u k u t

� �

� �
 (1) 

where uk  is a voltage coefficient, 
0u  is an initial voltage, 

1( )u t  and 
2( )u t  are respectively two input control voltages of 

pressure proportional valves and ( )u t  is the control law of this 

system. 

 

Fig. 1.  Control circuit diagram of pneumatic muscle joint  

There is a certain proportion of the input control voltages 
and the output pressures of the pressure proportional valves and 
the proportional coefficient is 

0k , from which we can obtain 

the following equation. 

 
� � � � � �
� � � � � �

1 0 0 1

2 0 0 2

P t P P t k u t

P t P P t k u t

� �� �

� �� �
 (2) 

where 
0P  is the initial pressure of PMAs, ( )P t�  is the 

pressure difference, 
1( )P t  and 

2( )P t  are two internal pressures 

of PMAs. 

The mathematical model of pneumatic muscle [9] is 
established as follows. 

 
� � � � � � � �� �
� � � � � � � �� �

2

1 1 1 1 2 1 3 4

2

2 2 1 2 2 2 3 4

F t P t k t k t k k

F t P t k t k t k k

� �

� �

� � � �

� � � �
 (3) 

where 
1F  and 

2F  are two pulling forces of PMAs, 
1k , 

2k , 
3k  

and 
4k  are parameters for the mathematical models of PMAs, 

1( )t�  and 
2( )t�  are two shrinking rates which are ratios of 

contraction lengths and initial lengths for PMAs. 

 
� � � �
� � � �

1

1 0 0

1

2 0 0

t rL t

t rL t

� � 	

� � 	

�

�

� �

� �
 (4) 

where 
0�  and 

0L  are the initial shrinking rate and initial length 

for PMAs, and r  is the gear radius of the joint. 

According to the kinematic model of pneumatic muscle 
joints, the following equation can be obtained. 
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� � � � � � � � � � � �1 1 2 2vT t J t b t F t d F t d t	 	 
� � � � �� � � � �1 �vt b t Ft b� � � � 1 �v� � � � �t b� � � � �t b t F� � � � �t b t F� � � � �1 � (5)

where J  represents the inertia moment of PMAs, vb represents 

the coefficient of damping, ( )t
  indicates an unknown term 

such as external disturbances and unmodeled dynamics for the 

mechanism of PMAs. And let 
1 2d d r� � . Substituting (2), (3) 

and (4) into (5), we can rewrite (5) as follows 

 
� � � � � �

� � � �

1 1

0 0 1 0 0 2 0

0

4 2

u

T t k u r k rL k rL t

k k rMu t t

� 	




� �� �

��������� �
 (6) 

� �� �22 1

1 0 1 0 2 0 32 2 2 2M k k r t L k k� 	 ��� � � �  

where 
1 2

1 02 ( ( ) ) ( )k r t L u t	 �
 is considered in the unknown term 

( )t
 . Then the dynamic model can be rewritten as 

� � � � � � � �

� �
� � � �

2 1

0 0 1 0 2 0

2

0 1 0 2 0 3

2 2

2

v

u

k u r k k Lb
t t t

J J
k k r k k k

u t d t
J

�
	 	 	

� �

��
� � �

� �
������������ �

� � � �� � � � 02k u00b
J
� �	 	� � � � 0vbvt t� � � 0v t� �v

 (7) 

Select the state of the system, let 

� � � � � � � �1 2,x t t x t t	 	� �� � � �t�	  (8) 

The dynamic system of pneumatic muscle joint can be 
expressed as follows 

� � � �
� � � � � � � � � �
� � � �

1 2

2 1 1 2 2

1

x t x t

x t b x t b x t d t bu t

y t x t

�

� � � �

�

� � �1 2� �� � �x t x� � �1 2� �
� �� �2 1� �x t b x� �2 11� � b x11  (9) 

where ( )y t  is the output of the system, and 

� �

� �

� � � �

2

0 1 0 2 0 3

2 1

0 0 1 0 2 0

1

2

2

2 2

u

v

k k r k k k
b

J
k u r k k L

b
J

b
b

J
t

d t
J

� �

�




�

� �
�

�
�

� �

�

 

The parameters of b , 
1b , 

2b  are known, and ( )d t  is the 

unknown term associated with states. Because the purpose of 
our control is trajectory tracking, we may need the assumption 
about the reference signal as follow: 

A. Assumption 2.1 
The reference signal is ry , and ry  is a constant in this 

paper. Now, we consider the model of the PAM as: 

 

� � � � � � � �� �
� � � �
� � � �0

,

0

x t x t u t t x t

y t x t

x t x

�� � �

�

�

A B

C
� � �� � �x t x� � �A ��xx �

 (10) 

where 


 �
1 2

0 1 0
, , = 1 0

b b b
� � � �

� �� � ��� � � �
� �� �

A B C  

and the system state 2x R�� � , the control input 1u U R� � , 
2U R� � �  is a known function, and � ��  is the unknown 

disturbance. 

Note that we can get the value of x  from the actual system. 

Suppose ( , )f x u  is local Lipchitz that satisfies 

 

, ,

x u

x u

x u y v l x y l u v

x u l x l u
x y v U�

� � � ����� � � �

� ����� �

� � �

A B A B
A B  (11) 

where xl , ul  are positive constant. Then, let’s assume that 

� �� �,t x t�  satisfies the following condition. 

B. Assumption 2.2 
The reference signal is ry , and ry  is a constant in this paper. 

Now, we consider the model of the PAM as: 

� � � �
� �
� �

� �

, ,

,0

,

,

, , , 0

t t

x x

tt x y l x y l t

t b

t x
l x b

t

t x
l x b

t

x y t T t

�

�

� �

� �

� � � �

�

�

�

� �

� ����� � � �

�����

�
����� �

�

�
����� �

�

� �� � � � �

 

where T  is a positive constant, and have positive parameters 

l� , tl , b� , 
t

l� , 
t

b� , 
x

l� , 
x

b�  that satisfy above inequalities. 

Meanwhile, when t �� , 0y � , we can obtain the 

following inequality: 

� � � � � �
� �

, ,0 ,0

,

x l x b

x l x b
� �

� �

� � � � � �

� �

� � ����� �

����� �
 

From Assumption 2.2, we can define a constant �  and a 

set   as 

 ! "2max ,
x

l x b R� ��
� # # �

�
� ��� � � � �  (12) 

Therefore, we can obtain ( , ( ))t x t� �  for 0t� � . 

The purpose of this paper is to find the explicit solution for 
the trajectory tracking of the pneumatic muscle joint system 
with constrained state and input. We will choose the EAMPC 
approach to solve this problem. We need to set a time sequence 

as kt kT� , 
0 0t � , k N�  where T  is the sampling period, 

which is for sampling the states x  from real system. And we 

will solve the constrained optimal control problem over the 

time interval �,k k Nt t ��� , � �k Nt k N T kT� � � � . Now, we can 

present the problem in discrete-time as 
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Problem 1. 

� �� �min ku U
J u x t

�
 

� �


 �

1 * * 0

1

. . ,

, , 0,

i i i
k k k k k k

i i
k k

i i
k k

i

s t x x u x x t

y x

x u U i N�

�

�

������� � � � � � �

����������� �

����������� � � � � � �

Α B
C

i
k,,,,

 

� �� � � � � �
2 21

0 0

N N
i i

k k k
i i

J u x t Q y r R u
�

� �

$ � � �% %  

where Q , R  are positive constants. 

In the next section, we will give a detailed explanation of 
*A , *B , k�  and i� � i  in the problem 1. 

III. PROBLEM FPRMULATION 

A. Adaptive Estimation 
In this section, we are going to estimate the uncertainty 

( , ( ))t x t�  using the adaptive method like [18]. An adaptive 

estimator is defined as: 

 
� � � � � �
� � 0

ˆ

0

z t ax t x u t

z x

&� � � � �

�

A B� �x t x� �� �t� �x t� � Axx� �z t ax� � axxx
 (13) 

where z  is the estimate of state, � � � � � �x t z t x t� �� � � �x t z t� � � �z t� �  is the 

estimate error of state, and a  a is an arbitrarily chosen positive 

parameter. Meanwhile, � �ˆ t&  is updated by the adaptation law 

as following: 

 

� � � � � � � �

� �

ˆ ˆ, 0 0

1
Ta

t T x kT
aT

e

& &� �' �� �

' �
�

� � �, �� � �ˆ �ˆkT�� � ,x kT� � , �ˆkT� � ,x kT�
 (14) 

where 
 �, ( 1)t kT k T� � , 0,1,2...k �  and T  is the sampling 

time. 

Remark 1. 
The adaptive estimator proposed in (13)-(14) is extended by 

the piecewise-constant adaptive law in literature [30]. Reference 
to [18], from (13) and (14), the performance of this estimator is 
established by the lemma as following: 

Lemma 3.1. 
Under the Assumption 2.2 is satisfied, when kt t� , we can 

obtain the inequality 

 � �� � � � � �� �ˆ, ,k k k k kt x t t x t t t� & (� ����� �  (15) 

satisfied for 0t� ����� , where 

� �� � � � � �� �� �
� � � �

, 1x kl l t t
k k k

x

t k

x t t t l x t e
l l

l t t T

�
�

�

�(

)

� �* +
� � � �, -�. /

��������������������������� � �

 

� � 2 1 aTT rT e) ��� � �  

� �� �
,

max

max max

t t

x x

x

x x u U

r l x b

l x b x u

� ��

� �� �
�

�

� � �

� �

������ � � �A B
 

where �  is defined in (12). 

Remark 2. 
The adaptive estimator proposed in (13)-(14) is extended by 

the piecewise-constant adaptive law in literature [30]. Reference 
to [18], from (13) and (14), the performance of this estimator is 
established by the lemma as following: 

It can be seen from the above formula that, as long as the 
sampling time T  is small enough, the estimation error bound 

( )T)  can be arbitrarily small. Which means that the estimation 

accuracy of the disturbance depends on the hardware of the 
system. 

It can be seen from the above formula that, as long as the 
sampling time T  is small enough, the estimation error bound 

( )T)  can be arbitrarily small. Which means that the estimation 

accuracy of the disturbance depends on the hardware of the 
system. 

From (11) and Assumption 2.2, and let maxu u U
l u b��

�
� � , 

we can get following inequalities is the same as [18]: 

 

� �� � � �� �

� � � �� �� � � �

, ,

1x k

k k

l l t t
k t k

x

t x t t x t

l x t e l t t
l l

�
�

�

� �

� � �

� ��

* +
��� � � � �, -�. /

 (16) 

Finally, based on (15) and (16), we can obtain that 

� �� � � �
� �� � � �� � � �� � � �

� � � �� �� � � � � �

� �� �

ˆ,

ˆ, , ,

1

,

x k

k

k k k k k

l l t t
k t k

x

k k

t x t t

t x t t x t t x t t

l x t e l t t T
l l

x t t t

�
�

�

� &

� � � &

� )

(

� �

� ��

��� � � �

* +
��� � � � � �, -�. /
��� � �

   (17) 

where ( ( ), )k kx t t t( � �  is a constant that can be chosen 

arbitrarily. 

Therefore, we can substitute ( , ( ))t x t�  using ˆ( )kt& , then 

(10) can be rewritten as  

 

� � � � � � � �
� � � �
� � � � � ( )

ˆ

, ,

k

k k k k N

x t x t u t t

y t x t

x t x t t t t

&

�

� � �

�

�� �� � �

A B
C

� �x t x� � Axx

 (18) 

B. States Constraints 
In the prediction process, we have to satisfy the condition 

of ( )x t �� . However, at the kth computation, the 

establishment of 
1

1( )k kx x t ��� �  can not guarantee the 

establishment of 
1( )kx t �� �  due to the error between ( )x t  and 

( )x t . Therefore, to ensure ( )x t �� , we have to make a reduced 

set �  from � . The detailed process as follows: 
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Theorem 3.1. 
The adaptive estimator proposed in (13)-(14) is extended by 

the piecewise-constant adaptive law in literature [30]. Reference 
to [18], from (13) and (14), the performance of this estimator is 
established by the lemma as following: 

Let ( ) ( )x t x t� �( )x( )� x( ) , and we can get 

� �� � � �� �1
, 1x kl t t

k N k
x

x t t t e
l
( �� � � ��1 x

l
( �x� (  

We can obtain the feasibility set of ( )x t � �� � � . 

Proof: 
The derivative of  is 

� � � �
� � � � � � � � � � � �� �ˆ ,k

x t x t

x t u t t x t u t t x t& �

� �

���� � � � � �A B A B

x � �� �x t�� �� �x� x � �x t� �� �x t� �x t� �
 

Based on (17), the following inequality can be obtain 

� � � � � � � � � � � �� �
� � � �� � � � � �� � � � � �� �
� � � � � �� �

� �� �

ˆ ,

ˆ ,

,

,

k

k

x k k

k k k

d
dt

x t u t t x t u t t x t

x t u t x t u t t t x t

l x t x t x t t t

l x t t t

& �

& �

(

(

�����

�� � � � � �

�� � � � � �

�� � � �

��� � �

A B A B

A B A B

�����

�� �� t�� ��x t�� ��
   

Then we can obtain 

� �� � � �� �1
, 1x kl t t

k N k
x

x t t t e
l
( ������ � ��1

l
( ����� (  

which completes the proof. And the feasible set of ( )x t  by 

using ˆ( )t&  can be expressed as 

 

� � � �

� �� � � �� �
, ,

1
, 1x k

k k N

l t t
k N k
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C. Model Discretization 
In this subsection, we need to discretize the PAM system 

model (18). The discrete equation is shown below 
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Then (20) can be rewritten as 
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where *A , *B  and kΔ  are constant matrices. 

And the feasible set combining with (19) should be defined 
to be 
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IV. EAMPC TRAJECTORY 

In this section, we will solve Problem 1 by using KKT 
conditions and get the optimized control input u  by solving a 

mpQP (multi-parametric quadratic programming) problem. 

Because we can always get i i
k ky r x r� � �C  only in terms of 

0

kx  and 
0 1[ ,..., ]N
k kU u u �� , we can represent the summing 

function as 
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Now, let’s assume the boundary condition for the states as 
following 

i
k kx 1�  

where ( 1,2)k k1 �  is the boundary of the states, then it can be 

expressed as 

k k� � �FX DU EΓ V  

where 


 �1 2,
T1 1�V  

Then, as [13], we can get the KKT conditions as follows: 

 2 2 2 2 2 0T T T T
u k kL R 23 � � � � � � �W X H Γ GU U N D  

 � � 0, 1,2j j j k j j k j2 � � � � � �V F X D U E Γ  

0k k� � � �FX DU EΓ V  

 20,j R2 2� � �  

For inactive constraints, we can obtain 

ˆˆ ˆ ˆ2 2 2 2 2 0T T T
k k R� � � � �W X H Γ GU U N  

where Ŵ , Ĥ , 1ˆ �G , N̂  are constructed by the rows in original 

matrices when 0j2 � . 

For active constraints, we can get 

0k k� � � �V CX GU JΓ 0�V C� k k �kCX GU Jk � ��k Γ  

where VV , CC , 1�G 1�G , JJ  are constructed by the rows in original 

matrices when 0j2 4 . 

Then the optimized problem can be presented as 
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Therefore, we can solve the optimization problem as 
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Finally, we can express the EAMPC Algorithm as follows 

EAMPC ALGORITHM 

Solve the mpQP offline: 

Get the optimized input 
0 *[ ]ku in terms of by 0

kx  and ˆ ( )kt& . 

At time 
0t : 

Start running the estimator defined as (13). 

At time kt t� : 

1. Compute ˆ ( )kx&  according to (14); 

2. Insert ( )kx t  and ˆ ( )kx&  to offline optimizer; 

3. Get the optimized input 
*( )u t  for 1[ , )k kt t t ��  and use it to the plant. 

V. SIMULATION 

This section presents the matlab simulation experiments 
that demonstrate the performance of the proposed EAMPC 
algorithm for a PAM antagonistic joint with disturbance. In the 
simulation, the parameters of PAM antagonistic joint are taken 
as following Table I: 

TABLE I.  THE SYSTEM PARAMETERS OF PAM 

0k  uk  1k  2k  3k  r 0�  0L  

0.09 0.45 10 7.5 1.6 0.25 0.1 0.2 

In order to display the effect of the proposed algorithm more 
intuitively, we compared the simulation results of the EAMPC 
algorithm with the min-max model predictive control algorithm. 
Two sets of experiments as follows: 

Case 1: 
In the first simulation, the initial values are chosen to be 

1 0x � , 
2 1x � � , 

0 2u � , disturbance is chosen as

1 2( ) sin( )d t x x� �  which is dependent of the states, and the 

tracking signal is 1ry � . 

 

Fig. 2.  The output and tracking error trajectory generated by EAMPC  

 

Fig. 3.  The input trajectory generated by EAMPC 

 

Fig. 4.  The output and tracking error trajectory generated by min-max model 

predictive control 
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Fig. 2 shows the output trajectory and tracking error 
trajectory, and Fig. 3 shows the input trajectory generated by 
EAMPC. For comparison, the output trajectory and tracking 
error trajectory are given in Fig. 4, and the input trajectory is 
given in Fig. 5 generated by min-max model predictive control. 

TABLE II.  RUNNING TIME OF TWO ALGORITHMS 

EAMPCt  6.58 6.69 6.65 7.05 6.64 

min max MPCt �  161.57 161.45 161.37 164.05 161.12 

Meanwhile, we carried out five groups comparison of the 
two algorithms, and the running time is shown respectively in 
Table II. 

 

Fig. 5.  The input trajectory generated by min-max model predictive control 

 

Fig. 6.  The output and tracking error trajectory generated by EAMPC 

 

Fig. 7.  The input trajectory generated by EAMPC 

Case 2: 
In the second simulation, the initial values are chosen to be 

1 1x � , 
2 0x � , 

0 0u � , disturbance is chosen as 

1 2( ) 0.5cos( )d t x x� �  which is dependent of the states, and the 

tracking signal is 0.5ry � . Fig. 6 shows the output trajectory 

and tracking error trajectory, and Fig. 7 shows the input 
trajectory generated by EAMPC. For comparison, the output 
trajectory and tracking error trajectory is given in Fig. 8, and 
the input trajectory is given in Fig. 9 generated by min-max 
model predictive control. 

 

Fig. 8.  The output and tracking error trajectory generated by min-max model 

predictive control 

 

Fig. 9.  The input trajectory generated by min-max EAMPC 

Also, we carried out five groups comparison of the two 
algorithms, and the running time is shown respectively in Table 
III. 

TABLE III.  RUNNING TIME OF TWO ALGORITHMS 

EAMPCt  6.57 6.68 6.66 6.58 6.65 

min max MPCt �  159.17 159.45 158.85 160.16 159.44 

Comparing the result figures of the two algorithms, we can 
obtain that the input signal of the EAMPC algorithm is 
smoother and lower. And from the results of running time, it is 
shown that the EAMPC algorithm can effectively improve the 
running speed of the system and reduce the running time on the 
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premise of ensuring the stability and tracking the performance 
of the system. 

VI. CONCLUSION 

An explicit solution to adaptive model predictive control for 
a PAM antagonistic joint trajectory tracking has been presented 
in this paper. We consider the model with a time-varying 
disturbance and design an adaptive estimator to estimate it. 
Also, the feasibility of the system ensured the EAMPC 
algorithm. In addition, the simulation studies not only verify the 
effectiveness of the proposed control scheme but also 
effectively prove the EAMPC algorithm can improve running 
time by comparing with the min-max model predictive control 
algorithm. For further research, we are going to consider the 
situation that the parameters of the system are unknown. 
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