12.3 The Chain Rule

Composite Function

Let \(f \) and \(g \) be functions. The composite function, or composition, of \(g \) and \(f \) is the function whose values are given by \(g[f(x)] \) for all \(x \) in the domain of \(f \) such that \(f(x) \) is in the domain of \(g \).

If we define \(F(x) = (f \circ g)(x) \)
\[= f(g(x)) \]
then,
\[F'(x) = f'(g(x))g'(x) \]

Chain Rule

If \(y \) is a function of \(u \), say \(y = f(u) \), and if \(u \) is a function of \(x \), say \(u = g(x) \), then \(y = f(u) = f[g(x)] \), and
\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]

Another words, if we define \(y = f(u) \) and \(u \) is a function of \(x \), then
\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]

Q1.

Suppose the demand for a certain brand of lamp is given by \(D(p) = -\frac{p^2}{100} + 500 \) where \(p \) is the price in dollars. If the price, in terms of the cost \(c \), is expressed as \(p(c) = 2c - 10 \), find (a) the demand in terms of the cost, and (b) the rate of change in the demand for the lamp per unit change in price.

Q2.

A leaking oil well off the Gulf Coast is spreading a circular film of oil over the water surface. At any time \(t \) (in hours) after the beginning of the leak, the radius of the circular oil slick (in feet) is given by \(r(t) = 5t \). Find the rate of change of the area of the oil slick with respect to time.

Let \(A(r) = \pi r^2 \) represent the area of a circle of radius \(r \).

a. Find and interpret \(A[r(t)] \).

b. Find and interpret \(\frac{dA}{dt}[r(t)] \) when \(t = 100 \).